Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18797–18806 | Cite as

Characterization of temperature sensitivity of V-modified CuFe2O4 ceramics for NTC thermistors

  • Ya Liu
  • Hong Zhang
  • Weiyi Fu
  • Zefang Yang
  • Zhicheng Li
Article
  • 44 Downloads

Abstract

Copper ferrite ceramics, CuFe2−xVxO4 (x = 0, 0.015, 0.03, 0.04 and 0.05), were prepared by a wet-chemical synthesis method followed by the traditional ceramic sintering process. The influence of V-ion content on phase component, ionic valence states, microstructures and electrical properties of the ceramics was investigated. The X-ray diffraction analysis shows that all the ceramics have cubic structure of spinel CuFe2O4 phase. All ceramics show the typical characteristic of negative temperature coefficient (NTC) of resistivity in the measurement temperature region between 25 and 250 °C. The temperature-sensitivity parameters of the ceramics can be adjusted from 3319 to 4920 K by changing the content of V-ions. The analysis of complex impedance revealed that both grain effect and grain-boundary effect contributed to the electrical properties of the ceramics. The possible conduction mechanism was proposed to be a thermal-activated polaron hopping conduction.

Notes

Acknowledgements

The authors acknowledge the support by the National Natural Science Foundation of China (No. 51767021) and the Jiangxi Yunjia High Tech Co., Ltd. (No. 738010128).

References

  1. 1.
    Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Adv. Mater. 28, 4373 (2016)CrossRefGoogle Scholar
  2. 2.
    O.S. Aleksić, P.M. Nikolić, Facta Univ. Ser.: Electron. Energ. 30, 267 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Schubert, C. Münch, S. Schuurman, V. Poulain, J. Kita, R. Moos, J. Eur. Ceram. Soc. 38, 613 (2018)CrossRefGoogle Scholar
  4. 4.
    H.S. Han, K.R. Park, Y.R. Hong, K. Shim, S. Mhin, J. Alloys Compd. 732, 486 (2018)CrossRefGoogle Scholar
  5. 5.
    C. Ma, H. Gao, J Mater Sci. Mater. Electron. 28, 6699 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Wu, Z.M. Huang, W. Zhou, C. Ouyang, Y. Hou, Y.Q. Gao, R. Chen, J.H. Chu, J. Appl. Phys. 115, 113703 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Guan, J. Yao, W. Kong, J. Wang, A.M. Chang, J Mater Sci. Mater. Electron. 29, 5082 (2018)CrossRefGoogle Scholar
  8. 8.
    F. Zhang, W. Zhou, C. OuYang, J. Wu, Y.Q. Gao, Z.M. Huang, AIP Adv. 5, 117137 (2015)CrossRefGoogle Scholar
  9. 9.
    D.F. Li, S.X. Zhao, K. Xiong, H.Q. Bao, C.W. Nan, J. Alloys Compd. 582, 283 (2014)CrossRefGoogle Scholar
  10. 10.
    C.L. Yuan, X.Y. Liu, C.R. Zhou, J.W. Xu, B. Li, Mater. Lett. 65, 836 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Wang, H. Zhang, X. Sun, Y. Liu, Z. Li, J. Mater. Sci. Mater. Electron. 28, 363 (2017)CrossRefGoogle Scholar
  12. 12.
    Z. Guo, J. Shao, H. Lin, M. Jiang, S. Chen, Z. Li, J. Mater. Sci. Mater. Electron. 28, 11871 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Sun, Z. Li, W. Fu, S. Chen, H. Zhang, J. Mater. Sci. Mater. Electron. 29, 343 (2018)CrossRefGoogle Scholar
  14. 14.
    X. Sun, S. Leng, H. Zhang, Z. He, Z. Li, J. Alloys Compd. 763, 975 (2018)CrossRefGoogle Scholar
  15. 15.
    S.F. Yu, S.Y. Wang, M. Lu, L. Zuo, J. Appl. Phys. 122, 235102 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Karthikeyan, S. Um, J. Alloys Compd. 695, 1770 (2017)CrossRefGoogle Scholar
  17. 17.
    W. Wiendartun, D.G. Syarif, J. Mater. Sci. Res. 1, 567 (2012)Google Scholar
  18. 18.
    S. Wiendartun, D. Gustaman, Am. Inst. Phys. 989, 126 (2008)Google Scholar
  19. 19.
    Y. Liu, S. Leng, S. Li, W. Fu, Z. Li, H. Zhang, Mater. Res. Express. 5, 036307 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Guo, H. Zhang, Z. He, S. Li, Z. Li, J. Mater. Sci. Mater. Electron. 29, 2491 (2018)CrossRefGoogle Scholar
  21. 21.
    M.A. Malana, R.B. Qureshi, M.N. Ashiq, Z.I. Zafar, Mater. Res. Bull. 48, 4775 (2013)CrossRefGoogle Scholar
  22. 22.
    W. Fu, Z. Li, P. Li, Y. Zeng, H. Zhang, J. Mater. Sci. Mater. Electron. 29, 11637 (2018)CrossRefGoogle Scholar
  23. 23.
    R.K. Selvan, C.O. Augustin, C. Sanjeeviraja, D. Prabhakaran, Solid State Commun. 137, 512 (2006)CrossRefGoogle Scholar
  24. 24.
    K. Satoshi, T. Tanabe, A.P. Tsai, Catal. Lett. 100, 89 (2005)CrossRefGoogle Scholar
  25. 25.
    M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 57, 887 (2010)CrossRefGoogle Scholar
  26. 26.
    T. Yamashita, H. Peter, Appl. Surf. Sci. 254, 2441 (2008)CrossRefGoogle Scholar
  27. 27.
    G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R.D. Gryse, J. Electron. Spectrosc. Relat. Phenom. 135, 167 (2004)CrossRefGoogle Scholar
  28. 28.
    M. Idrees, M. Nadeem, M.M. Hassan, J. Phys. D 43, 155 (2010)CrossRefGoogle Scholar
  29. 29.
    H.P. Huinink, P.A. Bobbert, W.F. Pasveer, M.A.J. Michels, Phys. Rev. B 73, 224204 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Brahma, R.N.P. Choudhary, A.K. Thakur, Physica B 355, 188 (2005)CrossRefGoogle Scholar
  31. 31.
    M.A. Rafiq, M.T. Khan, Q.K. Muhammad, M. Waqar, F. Ahmed, Appl. Phys. A 123, 589 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Lanfredi, M.A.L. Nobre, Appl. Phys. Lett. 86, 149 (2005)CrossRefGoogle Scholar
  33. 33.
    A.K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
  34. 34.
    A.K. Jonscher, J. Phys. D 32, 57 (1999)CrossRefGoogle Scholar
  35. 35.
    K. Funke, Solid State Chem. 22, 111 (1993)CrossRefGoogle Scholar
  36. 36.
    I.G. Austin, N.F. Mott, Adv. Phys. 50, 757 (2001)CrossRefGoogle Scholar
  37. 37.
    S. Yoshimoto, F. Ohashi, T. Kameyama, Macromol. Rapid Commun. 26, 461 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ya Liu
    • 1
  • Hong Zhang
    • 1
  • Weiyi Fu
    • 1
  • Zefang Yang
    • 1
  • Zhicheng Li
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations