Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18791–18796 | Cite as

Microwave dielectric properties of the (1 − x)(Mg0.97Zn0.03)(Ti0.97Sn0.03)O3–x(Ca0.8Na0.1Sm0.1)TiO3 ceramic system

  • Yan Xia
  • Shifeng Yuan
  • Shaobo An
  • Juan Jiang
  • Lin Gan
  • Tianjin Zhang
Article
  • 61 Downloads

Abstract

Microwave dielectric ceramics of (1 − x)(Mg0.97Zn0.03)(Ti0.97Sn0.03)O3–x(Ca0.8Na0.1Sm0.1)TiO3 (MZTS–CNST, 0.05 ≤ x ≤ 0.08) were fabricated by a conventional solid-state reaction method. The effects of the sintering temperature and composition on the phases, microstructures, and microwave dielectric properties were studied. A relatively low sintering temperature of 1325 °C is needed for the MZTS–CNST ceramic samples. The optional microwave dielectric properties were achieved at x = 0.08 with εr = 21.5, Q × f = 60,110 GHz, and a near-zero τf of 1.69 ppm/ °C.

Notes

Acknowledgements

This work was supported by the Foundation of Hubei Provincial Department of Education (No. Q20171009).

References

  1. 1.
    H.F. Zhou, F. He, X.L. Chen, J. Chen, L. Fang, W. Wang, Y.B. Miao, A novel thermally stable low-firing LiMg4V3O12 ceramic: sintering characteristic, crystal structure and microwave dielectric properties. Ceram. Int. 40, 6335–6338 (2014)CrossRefGoogle Scholar
  2. 2.
    U. Došler, M.M. Kržmanc, D. Suvorov, Phase evolution and microwave dielectric properties of MgO-B2O3-SiO2-based glass-ceramics. Ceram. Int. 38, 1019–1025 (2012)CrossRefGoogle Scholar
  3. 3.
    C.L. Lo, J.G. Duh, B.S. Chiou, W.H. Lee, Low-temperature sintering and microwave dielectric properties of anorthite-based glass-ceramics. J. Am. Ceram. Soc. 85, 2230–2235 (2002)CrossRefGoogle Scholar
  4. 4.
    K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 91, 69–86 (1989)CrossRefGoogle Scholar
  5. 5.
    X.M. Xue, H.T. Yu, G.L. Xu, Phase composition and microwave dielectric properties of Mg-excess MgTiO3 ceramics. J. Mater. Sci. 24, 1287–1291 (2013)Google Scholar
  6. 6.
    R.C. Kell, A.C. Greenham, G.C.E. Olds, High-permittivity temperature-stable ceramic dielectrics with low microwave loss. J. Am. Ceram. Soc. 56, 352–354 (1973)CrossRefGoogle Scholar
  7. 7.
    Y.C. Chen, S.M. Tsao, C.S. Lin, S.C. Wang, Y.H. Chien, Microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3 for application in dielectric resonator antenna. J. Alloy. Compd. 471, 347–351 (2009)CrossRefGoogle Scholar
  8. 8.
    Y.B. Chen, Microwave dielectric properties of x(Mg0.7Zn0.3)0.95Co0.05TiO3-(1 − x)Ca0.8Sm0.4/3TiO3 ceramics with a zero temperature coefficient of resonant frequency. J. Alloy. Compd. 507, 286–289 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Iqbal, H.X. Liu, H. Hao, A. Ullah, M.H. Cao, Z.H. Yao, Phase, microstructure, and microwave dielectric properties of a new ceramic system: (1 − x)Mg(Ti0.95Sn0.05)O3–xCaTiO3. Ceram. Int. 43, 14156–14160 (2017)CrossRefGoogle Scholar
  10. 10.
    V.M. Ferreira, F. Azough, R. Freer, J.L. Baptista, The effect of Cr and La on MgTiO3 and MgTiO3-CaTiO3 microwave dielectric ceramics. J. Mater. Res. 12, 3293–3299 (1997)CrossRefGoogle Scholar
  11. 11.
    L.X. Li, S. Li, T. Tian, X.S. Lyu, J. Ye, H. Sun, Microwave dielectric properties of (1 − x)MgTiO3-x(Ca0.6Na0.2Sm0.2)TiO3 ceramic system. J. Mater. Sci. 27, 1286–1292 (2016)Google Scholar
  12. 12.
    Y.D. Zhang, D. Zhou, J. Guo, H.H. Xi, B. He, Microwave dielectric properties of the (1-x)(Mg0.95Zn0.05)TiO3-x(Ca0.8Sm0.4/3)TiO3 temperature stable ceramics. Mater. Lett. 132, 200–202 (2014)CrossRefGoogle Scholar
  13. 13.
    W.W. Cho, K. Kakimoto, H. Ohsato, Microwave dielectric properties and low-temperature sintering of MgTiO3-SrTiO3 ceramics with B2O3 or CuO. Mater. Sci. Eng. B 121, 48–53 (2005)CrossRefGoogle Scholar
  14. 14.
    C.H. Shen, C.L. Huang, L.M. Lin, C.L. Pan, Characterization and dielectric behavior of B2O3-doped 0.9Mg0.95Co0.05TiO3-0.1Ca0.6La0.8/3TiO3 ceramic system at microwave frequency. J. Alloy. Compd. 504, 228–232 (2012)CrossRefGoogle Scholar
  15. 15.
    C.L. Huang, S.H. Lin, S.S. Liu, Y.B. Chen, x(Mg0.7Zn0.3)0.95Co0.05TiO3-(1 − x)(La0.5Na0.5)TiO3 ceramic at microwave frequency with a near zero temperature coefficient of resonant frequency. J. Alloy. Compd. 489, 541–544 (2010)CrossRefGoogle Scholar
  16. 16.
    L.X. Li, S. Li, X.S. Lyu, H. Sun, J. Ye, Microwave dielectric properties of 0.93Mg0.95Zn0.05TiO3- 0.07(Ca0.8Na0.1La0.1)TiO3 ceramic system. Mater. Lett. 163, 51–53 (2016)CrossRefGoogle Scholar
  17. 17.
    C.H. Shen, C.L. Huang, C.F. Shih, C.M. Huang, The effect of Ca0.61Nd0.26TiO3 addition on the microwave dielectric properties of (Mg0.95Ni0.05)TiO3 ceramics. J. Alloy. Compd. 475, 391–395 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Guo, Y.X. Li, G. Dou, S.P. Gong, The effect of titanium compounds addition on the microwave dielectric properties of the ZnO-Nb2O5 ceramics for LTCC. J. Mater. Sci. 25, 4319–4325 (2014)Google Scholar
  19. 19.
    M. Guo, Y.X. Li, G. Dou, S.P. Gong, Low-temperature sintered ZnNb2O6-CaTiO3 ceramics with near-zero τf. Mater. Chem. Phys. 147, 728–734 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Guo, G. Dou, Y.X. Li, S.P. Gong, The improvement research on microwave dielectric properties of magnesium tungstate for LTCC. J. Mater. Sci. 26, 608–612 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Material Science and EngineeringHubei UniversityWuhanChina

Personalised recommendations