Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18781–18790 | Cite as

Photoluminescence properties and crystal structure of color-tunable yellow–orange–carroty–red emissive Sr2(1−x)NaxP2O7:xSm3+ phosphors for near-UV/blue light-based white LEDs

  • Sha-sha Liu
  • Da-chuan Zhu
  • Ling-xiang Yang
  • Cong Zhao
  • Yong Pu
Article
  • 43 Downloads

Abstract

A series of Sr2(1−x)NaxP2O7:xSm3+ phosphors with adjustable emission have been synthesized via one-step calcination process of the precursors prepared by co-precipitation method successfully. The crystal structure and luminescent properties of the phosphors were analyzed in detail. Because the Sm3+ could occupy two different types of Sites (Sr1 and Sr2), the emission spectra of the Sr2−xP2O7:xSm3+ phosphors excited at 402 nm showed an emission band consisting of two symmetrical single bands (Em1 and Em2) in the wavelength range of 580–620 nm with a peak at 599 nm (4G5/2 → 6H7/2). The optimal doping concentration of these phosphors was at x = 0.04. The charge compensator Na+ ions can not only improve emission luminous intensity and quantum efficiency (QE) of the Sr2P2O7:Sm3+, but also change the shape and position of the emission peak at 599 nm. The color tunable wide gamut light can be controlled through properly adjusting the excitation wavelength of obtained samples, covering the yellow, orange, carroty and red chromaticity region, indicating Sr2(1−x)NaxP2O7:xSm3+ phosphors have high absorptions from the near ultraviolet to blue region and can be efficiently excited by commercial NUV and blue LEDs, thus can be used for developing warm white LEDs.

Abbreviations

Em1

Emission band1

Em2

Emission band2

NUV

Near ultraviolet

LEDs

Light-emitting diodes

PL

Photoluminescence

XRD

X-ray diffraction

QE

Quantum efficiency

λem/ex

Emission/excitation wavelength

CIE

Commission International de I′Eclairage

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (51702033) and the Program of Chongqing Municipal Education Commission (KJ1501126).

References

  1. 1.
    J. Zhao, Y. Wu, Y. Liang, M. Liu, F. Yang, Z. Xia, Opt. Mater. 35, 1675 (2013)CrossRefGoogle Scholar
  2. 2.
    C. Zhao, D. Zhu, M. Tu, M. Huang, L.-l. Peng, T. Han, RSC Adv. 6, 2368 (2016)CrossRefGoogle Scholar
  3. 3.
    S.S. Liu, D.C. Zhu, J.S. Wang, C. Zhao, T. Han, Luminescence 32, 1582 (2017)CrossRefGoogle Scholar
  4. 4.
    G. Annadurai, S.M.M. Kennedy, V. Sivakumar, J. Rare Earths 34, 576 (2016)CrossRefGoogle Scholar
  5. 5.
    S.S. Liu, D.C. Zhu, C. Zhao, T. Han, Luminescence 33, 89 (2018)CrossRefGoogle Scholar
  6. 6.
    S. Xu, K. Tang, D. Zhu, T. Han, Opt. Mater. 42, 106 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Mohapatra, A.K. Yadav, S.N. Jha, D. Bhattacharyya, S.V. Godbole, V. Natarajan, Chem. Phys. Lett. 601, 81 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Wang, M. Xu, R. Sheng, L. Liu, D. Jia, J. Alloys Compd. 579, 343 (2013)CrossRefGoogle Scholar
  9. 9.
    B. Ma, B. Liu, J. Lumin. 188, 54 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Ren, Y. Liu, R. Yang, Superlatt. Microstruct. 91, 138 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Xu, L. Wang, D. Jia, L. Liu, Mater. Res. Bull. 70, 691 (2015)CrossRefGoogle Scholar
  12. 12.
    J.s. Wang, D. Zhu, Q. Zheng, T. Han, J. Lumin. 179, 183 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Liu, Y. Hao, H. Wang, J. Zhao, P. Huang, B. Xu, J. Lumin. 131, 2422 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Puchalska, A. Watras, J. Alloys Compd. 688, 253 (2016)CrossRefGoogle Scholar
  15. 15.
    G. Blasse, Phys. Lett. A. 28, 444 (1968)CrossRefGoogle Scholar
  16. 16.
    M. Xu, L. Wang, L. Liu, D. Jia, R. Sheng, J. Lumin. 146, 475 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Xu, S. Liu, C. Zhao, T. Han, D. Zhu, J. Mater. Sci.: Mater. Electron. 28, 10061 (2017)Google Scholar
  18. 18.
    G.B. Nair, S.J. Dhoble, J. Fluoresc. 26, 1865 (2016)CrossRefGoogle Scholar
  19. 19.
    G. Zhu, Y. Wang, Q. Wang, X. Ding, W. Geng, Y. Shi, J. Lumin. 154, 246 (2014)CrossRefGoogle Scholar
  20. 20.
    C. Zhao, D. Zhu, M. Ma, T. Han, M. Tu, J. Alloys Compd. 523, 151 (2012)CrossRefGoogle Scholar
  21. 21.
    G.B. Nair, S.J. Dhoble, RSC Adv. 5, 49235 (2015)CrossRefGoogle Scholar
  22. 22.
    C. Zhao, D. Zhu, Y. Pu, L. Peng, T. Han, M.-j. Tu, Ceram. Int. 41, 13341 (2015)CrossRefGoogle Scholar
  23. 23.
    J.S. Wang, D.C. Zhu, C. Zhao, T. Han, S. Liu, Luminescence 32, 612 (2017)CrossRefGoogle Scholar
  24. 24.
    C. Zhao, D.-c. Zhu, W. Gao, M.-j. Tu, L.-l. Luo, T. Han, X.-l. Jing, Chem. Eng. J. 254, 486 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Puchalska, A. Watras, J. Solid State Chem. 238, 259 (2016)CrossRefGoogle Scholar
  26. 26.
    N. Wang, W. Zhao, J. Chen, J. Wang, Y. Meng, S. Yi, Y. Zhu, J. Mater. Sci.: Mater. Electron. 27, 6681 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sha-sha Liu
    • 1
  • Da-chuan Zhu
    • 1
  • Ling-xiang Yang
    • 1
  • Cong Zhao
    • 2
  • Yong Pu
    • 2
  1. 1.College of Material Science & EngineeringSichuan UniversityChengduChina
  2. 2.Research Center for Material Interdisciplinary Science, Chongqing University of Arts and Science, Chongqing Engineering Research Center for Optoelectronic Materials and DevicesChongqingChina

Personalised recommendations