Advertisement

Influence of the sintering process on ferroelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 lead-free piezoelectric ceramics

  • J. Camargo
  • A. Prado Espinosa
  • L. Ramajo
  • M. Castro
Article

Abstract

The effect of sintering process, particularly the sintering time, on ferroelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT) has been studied and compared with Bi0.5Na0.5TiO3 (BNT) and Bi0.5K0.5TiO3 (BKT) ceramics. Ceramic powders were prepared by the solid-state reaction method, employing a mechanochemical activation step, and sintered at different times. Samples were characterized by X-ray diffraction (XRD), Raman microspectroscopy, Scanning Electron Microscopy (SEM), impedance spectroscopy and ferroelectric hysteresis loops. Through XRD and Raman results, the perovskite structure was detected. In addition, a secondary phase was observed by SEM images. As the sintering time was increased, the medium grain size grew, and the amount of the secondary phase raised. Moreover, dielectric properties were modified by the resulting grain size and the amount of the secondary phase.

Notes

Acknowledgements

The authors thank the following institutions for providing financial support: National Research Council (CONICET, Argentina) PIP 2012-0432, National Agency of Scientific and Technological Promotion (ANPCYT, Argentina) PICT 2014-1314, and National University of Mar del Plata (Argentina) Project (15G/388).

References

  1. 1.
    J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  2. 2.
    X.P. Jiang, L.Z. Li, M. Zeng, H.L.W. Chan, Mater. Lett. 60, 1786 (2006)CrossRefGoogle Scholar
  3. 3.
    J.B. Lim, S. Zhang, J.-H. Jeon, T.R. Shrout, J. Am. Ceram. Soc. 93, 1218 (2010)Google Scholar
  4. 4.
    K.S.T. Takenaka, K. Maruyama, Jpn. J. Appl. Phys. 30(Part 1), 2236 (1991)CrossRefGoogle Scholar
  5. 5.
    R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Mater. Res. Bull. 39, 1709 (2004)CrossRefGoogle Scholar
  6. 6.
    P. Fu, Z. Xu, R. Chu, W. Li, X. Wu, M. Zhao, Mater. Chem. Phys. 138, 140 (2013)CrossRefGoogle Scholar
  7. 7.
    K.N. Pham, A. Hussain, C.W. Ahn, W. Kim, S.J. Jeong, J.S. Lee, Mater. Lett. 64, 2219 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Jiang, X. Liu, C. Liu, Mater. Res. Bull. 45, 220 (2010)CrossRefGoogle Scholar
  9. 9.
    B. Wang, L. Luo, F. Ni, P. Du, W. Li, H. Chen, J. Alloys Compd. 526, 79 (2012)CrossRefGoogle Scholar
  10. 10.
    Z. Chong-rong, C. Li-yuan, Bull. Mater. Sci. 34, 933 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Ullah, R.A. Malik, A. Ullah, D.S. Lee, S.J. Jeong, J.S. Lee, I.W. Kim, C.W. Ahn, J. Eur. Ceram. Soc. 34, 29 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Ramajo, J. Camargo, F. Rubio-Marcos, M. Castro, Ceram. Int. 41, 5380 (2015)CrossRefGoogle Scholar
  13. 13.
    J.-F. Trelcat, C. Courtois, M. Rguiti, A. Leriche, P.-H. Duvigneaud, T. Segato, Ceram. Int. 38, 2823 (2012)CrossRefGoogle Scholar
  14. 14.
    G.O. Jones, J. Kreisel, P.A. Thomas, Powder Diffr. 17, 301 (2002)CrossRefGoogle Scholar
  15. 15.
    J. Kreisel, aM. Glazer, G. Jones, P. Thomas, L. Abello, G. Lucazeau, J. Phys. Condens. Matter. 12, 3267 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. Camargo
    • 1
  • A. Prado Espinosa
    • 1
  • L. Ramajo
    • 1
  • M. Castro
    • 1
  1. 1.Institute of Research in Materials Science and Technology (INTEMA)Mar del PlataArgentina

Personalised recommendations