Advertisement

Analysis of current conduction mechanism in CZTSSe/n-Si structure

  • M. Terlemezoglu
  • Ö. Bayraklı
  • H. H. Güllü
  • T. Çolakoğlu
  • D. E. YildizEmail author
  • M. Parlak
Article

Abstract

In this study, Cu2ZnSn(S,Se)4 (CZTSSe) thin films were deposited by the single step thermal evaporation process using the sintered powder of CZTSSe on soda lime glass (SLG) and Si wafer substrates. The structural, optical, and electrical properties of deposited films were investigated. Current–voltage (I–V) in the temperature range of 250–350 K, capacitance–voltage(C–V) and conductance–voltage (G/w–V) measurements at room temperature were carried out to determine electrical properties of CZTSSe/n-Si structure. The forward bias I–V analysis based on thermionic emission (TE) showed barrier height inhomogeneity at the interface and thus, the conduction mechanism was modeled under the assumption of Gaussian distribution of barrier height. The mean barrier height \(({\bar {\Phi }_{B0}})\) and standard deviation \(({\sigma _0})\) at zero bias were obtained as 1.27 eV and 0.18 V, respectively. Moreover, Richardson constant was obtained as 120.46 A cm−2 K−2 via modified Richardson plot and the density of interface states (Dit) profile was determined using the data obtained from forward bias I–V measurements. In addition, by the results of frequency dependent C–V measurements, characteristics of the interface state density were calculated applying high-low frequency capacitance (CHF − CLF) and Hill–Coleman methods.

References

  1. 1.
    X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green, Prog. Photovoltaics Res. Appl. 24, 879 (2016)CrossRefGoogle Scholar
  2. 2.
    Z. Shi, D. Attygalle, A.H. Jayatissa, J. Mater. Sci. Mater. Electron. 28, 2290 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Li, T. Yuan, L. Jiang, F. Liu, Y. Liu, Y. Lai, J. Mater. Sci. Mater. Electron. 26, 204 (2015)CrossRefGoogle Scholar
  4. 4.
    H. Zhao, C. Persson, Thin Solid Films 519, 7508 (2011)CrossRefGoogle Scholar
  5. 5.
    D.H. Son, D.H. Kim, S.N. Park, K.J. Yang, D. Nam, H. Cheong, J.K. Kang, Chem. Mater. 27, 5180 (2015)CrossRefGoogle Scholar
  6. 6.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovoltaics Res. Appl. 21, 72 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Fairbrother, E. García-Hemme, V. Izquierdo-Roca, X. Fontané, F.A. Pulgarín-Agudelo, O. Vigil-Galán, A. Pérez-Rodríguez, E. Saucedo, J. Am. Chem. Soc. 134, 8018 (2012)CrossRefGoogle Scholar
  8. 8.
    Y.B. Kishore Kumar, G.S. Babu, P.U. Bhaskar, V.S. Raja, Sol. Energy Mater. Sol. Cells 93, 1230 (2009)CrossRefGoogle Scholar
  9. 9.
    K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009)CrossRefGoogle Scholar
  10. 10.
    I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, R. Noufi, Sol. Energy Mater. Sol. Cells 101, 154 (2012)CrossRefGoogle Scholar
  11. 11.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Yin, C. Tang, L. Sun, Z. Shen, H. Gong, Chem. Mater. 26, 2005 (2014)CrossRefGoogle Scholar
  13. 13.
    C.M. Fella, A.R. Uhl, C. Hammond, I. Hermans, Y.E. Romanyuk, A.N. Tiwari, J. Alloys Compd. 567, 102 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Márquez-Prieto, M.V. Yakushev, I. Forbes, J. Krustok, P.R. Edwards, V.D. Zhivulko, O.M. Borodavchenko, A.V. Mudryi, M. Dimitrievska, V. Izquerdo-Roca, N.M. Pearsall, R.W. Martin, Sol. Energy Mater. Sol. Cells 152, 42 (2016)CrossRefGoogle Scholar
  15. 15.
    P. Salomé, J. Malaquias, P. Fernandes, M. Ferreira, A. da Cunha, J. Leit, J. Gonzá lez, F. Matinaga, Sol. Energy Mater. Sol. Cells 101, 147 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Ranjbar, M.R. Rajesh Menon, P.A. Fernandes, A.F. Da Cunha, Thin Solid Films 582, 188 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, Thin Solid Films 519, 7403 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Fairbrother, X. Fontané, V. Izquierdo-Roca, M. Placidi, D. Sylla, M. Espindola-Rodriguez, S. López-Mariño, F.A. Pulgarín, O. Vigil-Galán, A. Pérez-Rodríguez, E. Saucedo, Prog. Photovoltaics Res. Appl. 22, 479 (2014)CrossRefGoogle Scholar
  19. 19.
    K. Muska, M. Kauk-Kuusik, M. Grossberg, M. Altosaar, M. Pilvet, T. Varema, K. Timmo, O. Volobujeva, A. Mere, Thin Solid Films 535, 35 (2013)CrossRefGoogle Scholar
  20. 20.
    G.S. Babu, Y.K. Kumar, P.U. Bhaskar, S.R. Vanjari, Sol. Energy Mater. Sol. Cells 94, 221 (2010)CrossRefGoogle Scholar
  21. 21.
    N.M. Shinde, D.P. Dubal, D.S. Dhawale, C.D. Lokhande, J.H. Kim, J.H. Moon, Mater. Res. Bull. 47, 302 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Yılmaz, M. Parlak, Ç Erçelebi, Semicond. Sci. Technol. 22, 1268 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Martínez-Pastor, A. Segura, J.L. Valdés, A. Chevy, J. Appl. Phys. 62, 1477 (1987)CrossRefGoogle Scholar
  24. 24.
    S.M. Sze, K.K. Ng, Semiconductor Devices: Physics and Technology (2006)Google Scholar
  25. 25.
    D.K. Schroder, Semiconductor Material and Device Characterization: Third Edition (2005)Google Scholar
  26. 26.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, 1988)Google Scholar
  27. 27.
    B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (1984)Google Scholar
  28. 28.
    G. Ersöz, İ Yücedağ, S. Bayrakdar, Ş Altındal, A. Gümüş, J. Mater. Sci. Mater. Electron. 28, 6413 (2017)CrossRefGoogle Scholar
  29. 29.
    D.E. Yıldız, Ş Altındal, H. Kanbur, J. Appl. Phys. 103, 124502 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Kocyigit, I. Orak, Z. Çaldıran, A. Turut, J. Mater. Sci. Mater. Electron. 0, (2017)Google Scholar
  31. 31.
    R.T. Tung, Phys. Rev. B 45, 13509 (1992)CrossRefGoogle Scholar
  32. 32.
    R.T. Tung, Mater. Sci. Eng. R. Rep. 35, 1 (2001)CrossRefGoogle Scholar
  33. 33.
    J.H. Werner, H.H. Güttler, J. Appl. Phys. 69, 1522 (1991)CrossRefGoogle Scholar
  34. 34.
    J.M. Andrews, M.P. Lepselter, Solid State Electron. 13, 1011 (1970)CrossRefGoogle Scholar
  35. 35.
    C. Bozkaplan, A. Tombak, M.F. Genişel, Y.S. Ocak, K. Akkilic, Mater. Sci. Semicond. Process 58, 34 (2017)CrossRefGoogle Scholar
  36. 36.
    K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, Ş Altındal, J. Mater. Sci. Mater. Electron. 28, 3987 (2017)CrossRefGoogle Scholar
  37. 37.
    W. Mönch, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 17, 1867 (1999)CrossRefGoogle Scholar
  38. 38.
    H. Tecimer, Ş Altındal, S. Aksu, Y. Atasoy, E. Bacaksız, J. Mater. Sci. Mater. Electron. 28, 7501 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Chand, J. Kumar, Semicond. Sci. Technol. 10, 1680 (1995)CrossRefGoogle Scholar
  40. 40.
    R.F. Schmitsdorf, T.U. Kampen, W. Mönch, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 15, 1221 (1997)CrossRefGoogle Scholar
  41. 41.
    R.T. Tung, Appl. Phys. Lett. 58, 2821 (1991)CrossRefGoogle Scholar
  42. 42.
    H.H. Güllü, Ö Bayraklı, D.E. Yildiz, M. Parlak, J. Mater. Sci. Mater. Electron. 1 (2017)Google Scholar
  43. 43.
    S.S. Naik, V.R. Reddy, Superlattices Microstruct. 48, 330 (2010)CrossRefGoogle Scholar
  44. 44.
    A. Tataroğlu, Ş Altındal, J. Alloys Compd. 484, 405 (2009)CrossRefGoogle Scholar
  45. 45.
    G. Ersöz, I. Yücedag, Y.A. Kalandaragh, I. Orak, Ş Altındal, IEEE Trans. Electron. Devices 63, 2948 (2016)CrossRefGoogle Scholar
  46. 46.
    A. Tataroǧlu, Ş Altindal, Microelectron. Eng. 85, 2256 (2008)CrossRefGoogle Scholar
  47. 47.
    W.A. Hill, C. Coleman, Solid. State. Electron. 23, 987 (1980)CrossRefGoogle Scholar
  48. 48.
    F. Yakuphanoglu, Sol. Energy 85, 2518 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Terlemezoglu
    • 1
    • 2
    • 3
  • Ö. Bayraklı
    • 1
    • 2
    • 4
  • H. H. Güllü
    • 2
    • 5
  • T. Çolakoğlu
    • 2
  • D. E. Yildiz
    • 6
    Email author
  • M. Parlak
    • 1
    • 2
  1. 1.Department of PhysicsMiddle East Technical University (METU)AnkaraTurkey
  2. 2.Center for Solar Energy Research and Applications (GÜNAM), METUAnkaraTurkey
  3. 3.Department of PhysicsNamık Kemal UniversityTekirdagTurkey
  4. 4.Department of PhysicsAhi Evran UniversityKırşehirTurkey
  5. 5.Central LaboratoryMiddle East Technical University (METU)AnkaraTurkey
  6. 6.Department of PhysicsHitit UniversityÇorumTurkey

Personalised recommendations