Advertisement

Temperature and frequency dependent dielectric and impedance characteristics of double perovskite Bi2MnCoO6 electronic material

  • A. Tripathy
  • S. N. DasEmail author
  • S. K. Pradhan
  • S. Bhuyan
  • R. N. P. Choudhary
Article

Abstract

The temperature and field dependent capacitive as well as conducting characteristics of double perovskite electronic material (Bi2MnCoO6) have been investigated using dielectric and impedance spectroscopy techniques. The electronic material has been formulated by applying a high temperature solid state reaction based ceramic processing route. The formation of the desired sample material is confirmed with a monoclinic crystal system using room temperature X-ray diffraction analysis. The uniform grain distribution is predicted from the micrograph, and the stoichiometric chemical content of the solid solution is determined from energy dispersive X-ray technique. The acquaintance between micro structural study and frequency–temperature dependent electrical properties of the compound has revealed negative temperature coefficient of resistance behaviour. The prepared compound unveils non-Debye type relaxation. The studied compound presents important dielectric properties which substantiate the material propensity for formulation of electronic devices.

References

  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    Y. Lan, X. Feng, X. Zhang, Y. Shen, D. Wang, Phys. Lett. A 380, 2962 (2016)CrossRefGoogle Scholar
  3. 3.
    A.K. Paul, M. Reehuis, V. Ksenofontov, B.H. Yan, A. Hoser, D.M. Többens, P.M. Abdala, P. Adler, M. Jansen, C. Felser, Phys. Rev. Lett. 111, 1 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Saxena, K. Tanwar, T. Maiti, Scripta Mater. 130, 205 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Bhuyan, K. Sivanand, S.K. Panda, R. Kumar, J. Hu, IEEE Magn. Lett. 2, 6000204 (2011)CrossRefGoogle Scholar
  6. 6.
    A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, J. Am. Chem. Soc. 138, 2138 (2016)CrossRefGoogle Scholar
  7. 7.
    X. Gao, D. Xu, J. Du, J. Li, Z. Yang, J. Sun, J. Mater. Sci. Mater. Electron. (2017).  https://doi.org/10.1007/s10854-017-8017-9 Google Scholar
  8. 8.
    M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Halder, S. Bhuyan, S.N. Das, S. Sahoo, R.N.P. Choudhary, P. Das, K. Parida, Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1406-3 Google Scholar
  10. 10.
    H.J. Feng, F.M. Liu, Phys. Lett. A 372, 1904 (2008)CrossRefGoogle Scholar
  11. 11.
    O.E. Rhazouani, A. Slassi, Y. Ziat, A. Benyoussef, Phys. Lett. A 381, 1177 (2017)CrossRefGoogle Scholar
  12. 12.
    C.L. Bull, D. Gleeson, K.S. Knight, J. Phys.: Condens. Matter 15, 4927 (2003)Google Scholar
  13. 13.
    M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, M. Takano, J. Am. Chem. Soc. 127, 8889 (2005)CrossRefGoogle Scholar
  14. 14.
    E. Wu, J. Appl. Cryst. 22, 506 (1989)CrossRefGoogle Scholar
  15. 15.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978)Google Scholar
  16. 16.
    H. Fan, S. Ke, Sci. China Technol. Sci. 52, 2180 (2009)CrossRefGoogle Scholar
  17. 17.
    S.K. Pradhan, S.N. Das, S. Bhuyan, C. Behera, R. Padhee, R.N.P. Choudhary, Appl. Phys. A 122, 604 (2016)CrossRefGoogle Scholar
  18. 18.
    K.K. Mishra, A.T. Satya, A. Bharathi, V. Sivasubramanian, V.R.K. Murthy, A.K. Arora, J. Appl. Phys. 110, 123529 (2011)CrossRefGoogle Scholar
  19. 19.
    S.N. Das, A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 10099 (2016)CrossRefGoogle Scholar
  20. 20.
    S.N. Das, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 18913 (2017)CrossRefGoogle Scholar
  21. 21.
    D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci. Mater. Electron. 23, 779 (2012)CrossRefGoogle Scholar
  22. 22.
    W. Liu, G. Tan, G. Dong, X. Xue, H. Ren, A. Xia, Superlattices Microstruct. 72, 186 (2014)CrossRefGoogle Scholar
  23. 23.
    V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)CrossRefGoogle Scholar
  24. 24.
    H. Jain, C.H. Hsieh, J. Non-Cryst. Solids 172, 1408 (1994)CrossRefGoogle Scholar
  25. 25.
    S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswamy, J. Electron. Mater. 26, 6572 (2015)CrossRefGoogle Scholar
  26. 26.
    D.P. Almond, A.R. West, Solid State Ion. 11, 57 (1983)CrossRefGoogle Scholar
  27. 27.
    S.N. Das, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, P. Das, J. Electron. Mater. 46, 1637 (2017)CrossRefGoogle Scholar
  28. 28.
    S.K. Pradhan, S.N. Das, S. Halder, S. Bhuyan, R.N.P. Choudhary, J. Electron. Mater. 28, 9627 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, J.P. Zhou, Q. Liu, S. Zhang, C.Y. Deng, Ceram. Int. 40, 5853 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • A. Tripathy
    • 1
  • S. N. Das
    • 1
    Email author
  • S. K. Pradhan
    • 1
  • S. Bhuyan
    • 1
  • R. N. P. Choudhary
    • 2
  1. 1.Department of Electronics and Communication EngineeringSiksha ‘O’ Anusandhan UniversityBhubaneswarIndia
  2. 2.Department of PhysicsSiksha ‘O’ Anusandhan UniversityBhubaneswarIndia

Personalised recommendations