Advertisement

Magnetic graphene/Ni-nano-crystal hybrid for small field magnetoresistive effect synthesized via electrochemical exfoliation/deposition technique

  • Z. Sheykhifard
  • S. Majid Mohseni
  • B. Tork
  • M. R. Hajiali
  • L. Jamilpanah
  • B. Rahmati
  • F. Haddadi
  • M. Hamdi
  • S. Morteza Mohseni
  • M. Mohammadbeigi
  • A. Ghaderi
  • S. Erfanifam
  • M. Dashtdar
  • F. Feghhi
  • N. Ansari
  • S. Pakdel
  • M. Pourfath
  • A. Hosseinzadegan
  • M. Bahreini
  • S. H. Tavassoli
  • M. Ranjbar
  • S. A. H. Banuazizi
  • S. Chung
  • J. Akerman
  • N. Nikkam
  • A. Sohrabi
  • S. E. Roozmeh
Article

Abstract

Two-dimensional heterostructures of graphene (Gr) and metal/semiconducting elements convey new direction in electronic devices. They can be useful for spintronics because of small spin orbit interaction of Gr as a non-magnetic metal host with promising electrochemical stability. In this paper, we demonstrate one-step fabrication of magnetic Ni-particles entrapped within Gr-flakes based on simultaneous electrochemical exfoliation/deposition procedure by two-electrode system using platinum as the cathode electrode and a graphite foil as the anode electrode. The final product is an air stable hybrid element including Gr flakes hosting magnetic Ni-nano-crystals showing superparamagnetic-like response and room temperature giant magnetoresistance (GMR) effect at small magnetic field range. The GMR effect is originated from spin scattering through ferromagnetic/non-magnetic nature of Ni/Gr heterostructure and interpreted based on a phenomenological spin transport model. Our work benefits from XRD, XPS, Raman, TEM, FTIR and VSM measurements We addressed that how our results can be used for rapid manufacturing of magnetic Gr for low field magneto resistive elements and potential printed spintronic devices.

Notes

Acknowledgements

S.M.M. acknowledges support from Iran Science Elites Federation (ISEF), Iran’s Cognitive Sciences and Technologies Council under contract number 2714, Iran National Science Foundation (INSF), Iran Nanotechnology Initiative Council and Iran’s National Elites Foundation (INEF). We thank Prof. Omar Yaghi for his useful comments on the manuscript.

Supplementary material

10854_2017_8362_MOESM1_ESM.docx (256 kb)
Supplementary material 1 (DOCX 255 KB)

References

  1. 1.
    I. Žutić, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004)CrossRefGoogle Scholar
  2. 2.
    N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. Van Wees, Nature 448, 571 (2007)CrossRefGoogle Scholar
  3. 3.
    D. Pesin, A.H. MacDonald, Nat. Mater. 11, 409 (2012)CrossRefGoogle Scholar
  4. 4.
    W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Nat. Nanotechnol. 9, 794 (2014)CrossRefGoogle Scholar
  5. 5.
    W. Zhang, J. Sklenar, B. Hsu, W. Jiang, M.B. Jungfleisch, J. Xiao, F.Y. Fradin, Y. Liu, J.E. Pearson, J.B. Ketterson, Z. Yang, A. Hoffmann, APL Mater. 4, 32302 (2016)CrossRefGoogle Scholar
  6. 6.
    Z. Wang, D.-K. Ki, J.Y. Khoo, D. Mauro, H. Berger, L.S. Levitov, A.F. Morpurgo, Phys. Rev. X 6, 41020 (2016)Google Scholar
  7. 7.
    Q. Shao, G. Yu, Y.-W. Lan, Y. Shi, M.-Y. Li, C. Zheng, X. Zhu, L.-J. Li, P.K. Amiri, K.L. Wang, Nano Lett. 16, 7514 (2016)CrossRefGoogle Scholar
  8. 8.
    A.R. Mellnik, J.S. Lee, A. Richardella, J.L. Grab, P.J. Mintun, M.H. Fischer, A. Vaezi, A. Manchon, E.-A. Kim, N. Samarth, D.C. Ralph, Nature 511, 449 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L. Chang, M. Montazeri, G. Yu, W. Jiang, T. Nie, R.N. Schwartz, Y. Tserkovnyak, K.L. Wang, Nat. Mater. 13, 699 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Fan, X. Kou, P. Upadhyaya, Q. Shao, L. Pan, M. Lang, X. Che, J. Tang, M. Montazeri, K. Murata, L.-T. Chang, M. Akyol, G. Yu, T. Nie, K.L. Wong, J. Liu, Y. Wang, Y. Tserkovnyak, K.L. Wang, Nat. Nanotechnol. 11, 352 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Roche, J. Åkerman, B. Beschoten, J.-C. Charlier, M. Chshiev, S. Prasad Dash, B. Dlubak, J. Fabian, A. Fert, M. Guimarães, F. Guinea, I. Grigorieva, C. Schönenberger, P. Seneor, C. Stampfer, S.O. Valenzuela, X. Waintal, B. van Wees, 2D Mater. 2, 30202 (2015)CrossRefGoogle Scholar
  12. 12.
    F. Volmer, M. Drögeler, T. Pohlmann, G. Güntherodt, C. Stampfer, B. Beschoten, 2D Mater. 2, 24001 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Balakrishnan, G.K.W. Koon, M. Jaiswal, A.H. Castro Neto, B. Özyilmaz, Nat. Phys. 9, 284 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Balakrishnan, G.K.W. Koon, A. Avsar, Y. Ho, J.H. Lee, M. Jaiswal, S.-J. Baeck, J.-H. Ahn, A. Ferreira, M.A. Cazalilla, A.H. Castro Neto, B. Özyilmaz, Nat. Commun. 5, 4748 (2014)CrossRefGoogle Scholar
  15. 15.
    W. Han, K. Pi, K.M. McCreary, Y. Li, J.J.I. Wong, A.G. Swartz, R.K. Kawakami, Phys. Rev. Lett. 105, 167202 (2010)CrossRefGoogle Scholar
  16. 16.
    T.-Y. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S.R. Ali, A. Pachoud, M. Zeng, M. Popinciuc, G. Güntherodt, B. Beschoten, B. Özyilmaz, Phys. Rev. Lett. 107, 47206 (2011)CrossRefGoogle Scholar
  17. 17.
    N. Naseri, S. Solaymani, A. Ghaderi, M. Bramowicz, S. Kulesza, Ş Ţălu, M. Pourreza, S. Ghasemi, RSC Adv. 7, 12923 (2017)CrossRefGoogle Scholar
  18. 18.
    B. Raes, J.E. Scheerder, M.V. Costache, F. Bonell, J.F. Sierra, J. Cuppens, J. Van de Vondel, S.O. Valenzuela, Nat. Commun. 7, 11444 (2016)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, D.-K. Ki, H. Chen, H. Berger, A.H. MacDonald, A.F. Morpurgo, Nat. Commun. 6, 8339 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Ranjbar, R. Sbiaa, S.M. Mohseni, M. Rahimabady, S.N. Piramanayagam, Mater. Today 19, 368 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Cervetti, A. Rettori, M.G. Pini, A. Cornia, A. Repollés, F. Luis, M. Dressel, S. Rauschenbach, K. Kern, M. Burghard, L. Bogani, Nat. Mater. 15, 164 (2016)CrossRefGoogle Scholar
  22. 22.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)CrossRefGoogle Scholar
  23. 23.
    F. Molitor, J. Güttinger, C. Stampfer, S. Dröscher, A. Jacobsen, T. Ihn, K. Ensslin, J. Phys. Condens. Matter 23, 243201 (2011)CrossRefGoogle Scholar
  24. 24.
    E.D. Cobas, O.M.J. van’t Erve, S.-F. Cheng, J.C. Culbertson, G.G. Jernigan, K. Bussman, B.T. Jonker, ACS Nano 10, 10357 (2016)CrossRefGoogle Scholar
  25. 25.
    Z. Wang, C. Tang, R. Sachs, Y. Barlas, J. Shi, Phys. Rev. Lett. 114, 16603 (2014)CrossRefGoogle Scholar
  26. 26.
    J.C. Leutenantsmeyer, A.A. Kaverzin, M. Wojtaszek, B.J. van Wees, 2D Mater. 4, 14001 (2016)CrossRefGoogle Scholar
  27. 27.
    V. Dalouji, S.M. Elahi, S. Solaymani, A. Ghaderi, Eur. Phys. J. Plus 131, 84 (2016)CrossRefGoogle Scholar
  28. 28.
    T. Ghodselahi, S. Solaymani, M. Akbarzadeh Pasha, M.A. Vesaghi, Eur. Phys. J. D. 66, 299 (2012)CrossRefGoogle Scholar
  29. 29.
    Ş Ţălu, S. Solaymani, M. Bramowicz, N. Naseri, S. Kulesza, A. Ghaderi, RSC Adv. 6, 27228 (2016)CrossRefGoogle Scholar
  30. 30.
    Ş Ţălu, Micro and Nanoscale Characterization of Three Dimensional Surfaces. Basics and Applications (Napoca Star, Cluj-Napoca, 2015)Google Scholar
  31. 31.
    B. Li, H. Cao, J. Yin, Y.A. Wu, J.H. Warner, J. Mater. Chem. 22, 1876 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Tuček, Z. Sofer, D. Bouša, M. Pumera, K. Holá, A. Malá, K. Poláková, M. Havrdová, K. Čépe, O. Tomanec, R. Zbořil, Nat. Commun. 7, 12879 (2016)CrossRefGoogle Scholar
  33. 33.
    V. Dalouji, S. Elahi, S. Solaymani, A. Ghaderi, H. Elahi, Appl. Phys. A 122, 1 (2016)CrossRefGoogle Scholar
  34. 34.
    V. Dalouji, S.M. Elahi, A. Ghaderi, S. Solaymani, Chin. Phys. Lett. 33, 3 (2016)Google Scholar
  35. 35.
    Ş Ţălu, M. Bramowicz, S. Kulesza, V. Dalouji, S. Solaymani, S. Valedbagi, Microsc. Res. Tech. 79, 1208 (2016)CrossRefGoogle Scholar
  36. 36.
    G. Zhu, Y. Liu, Z. Xu, T. Jiang, C. Zhang, X. Li, G. Qi, ChemPhysChem 11, 2432 (2010)CrossRefGoogle Scholar
  37. 37.
    W.J. Stark, Angew. Chem. Int. Ed. Engl. 50, 1242 (2011)CrossRefGoogle Scholar
  38. 38.
    Z. Li, L. Wei, M.Y. Gao, H. Lei, Adv. Mater. 17, 1001 (2005)CrossRefGoogle Scholar
  39. 39.
    H.-L. Xu, H. Bi, R.-B. Yang, J. Appl. Phys. 111, 07A522 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Zong, Y. Huang, Y. Zhao, X. Sun, C. Qu, D. Luo, J. Zheng, RSC Adv. 3, 23638 (2013)CrossRefGoogle Scholar
  41. 41.
    H. Teymourian, A. Salimi, S. Khezrian, Biosens. Bioelectron. 49, 1 (2013)CrossRefGoogle Scholar
  42. 42.
    A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Chem. Rev. 114, 7150 (2014)CrossRefGoogle Scholar
  43. 43.
    Y. He, Q. Sheng, J. Zheng, M. Wang, B. Liu, Electrochim. Acta 56, 2471 (2011)CrossRefGoogle Scholar
  44. 44.
    A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, Science 356, 69 (2017)CrossRefGoogle Scholar
  45. 45.
    D. Makarov, D. Karnaushenko, O.G. Schmidt, ChemPhysChem 14, 1771 (2013)CrossRefGoogle Scholar
  46. 46.
    D. McManus, S. Vranic, F. Withers, V. Sanchez-Romaguera, M. Macucci, H. Yang, R. Sorrentino, K. Parvez, S.-K. Son, G. Iannaccone, K. Kostarelos, G. Fiori, C. Casiraghi, Nat. Nanotechnol. 12, 343 (2017)CrossRefGoogle Scholar
  47. 47.
    C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, M.A. Hussain, Carbon 54, 1 (2013)CrossRefGoogle Scholar
  48. 48.
    A.M. Abdelkader, A.J. Cooper, R.A.W. Dryfe, I.A. Kinloch, Nanoscale 7, 6944 (2015)CrossRefGoogle Scholar
  49. 49.
    K. Parvez, Z. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, J. Am. Chem. Soc. 136, 6083 (2014)CrossRefGoogle Scholar
  50. 50.
    Z.-S. Wu, K. Parvez, S. Li, S. Yang, Z. Liu, S. Liu, X. Feng, K. Müllen, Adv. Mater. 27, 4054 (2015)CrossRefGoogle Scholar
  51. 51.
    W. Wei, G. Wang, S. Yang, X. Feng, K. Müllen, J. Am. Chem. Soc. 137, 5576 (2015)CrossRefGoogle Scholar
  52. 52.
    Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, K. Müllen, Adv. Mater. 27, 669 (2015)CrossRefGoogle Scholar
  53. 53.
    Y. Xu, J. Liu, Small 12, 1400 (2016)CrossRefGoogle Scholar
  54. 54.
    Z. Ren, N. Meng, K. Shehzad, Y. Xu, S. Qu, B. Yu, J.K. Luo, Nanotechnology 26, 65706 (2015)CrossRefGoogle Scholar
  55. 55.
    N. Chen, X. Huang, L. Qu, Phys. Chem. Chem. Phys. 17, 32077 (2015)CrossRefGoogle Scholar
  56. 56.
    G. Abellán, H. Prima-García, E. Coronado, J. Mater. Chem. C 4, 2252 (2016)CrossRefGoogle Scholar
  57. 57.
    B. Dlubak, M.B. Martin, R.S. Weatherup, H. Yang, C. Deranlot, R. Blume, R. Schloegl, A. Fert, A. Anane, S. Hofmann, P. Seneor, J. Robertson, ACS Nano 6, 10930 (2012)CrossRefGoogle Scholar
  58. 58.
    P. Leclair, J.K. Ha, H.J.M. Swagten, J.T. Kohlhepp, C.H. Van De Vin, W.J.M. De Jonge, Appl. Phys. Lett. 80, 625 (2002)CrossRefGoogle Scholar
  59. 59.
    K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Mullen, ACS Nano 7, 3598 (2013)CrossRefGoogle Scholar
  60. 60.
    M. Aghazadeh, A.N. Golikand, M. Ghaemi, Int. J. Hydrogen Energy 36, 8674 (2011)CrossRefGoogle Scholar
  61. 61.
    D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. R. Soc. A 471, 20140792 (2015)CrossRefGoogle Scholar
  62. 62.
    J. Fan, G. Li, D. Luo, C. Fu, Q. Li, J. Zheng, L. Li, Electrochim. Acta 173, 7 (2015)CrossRefGoogle Scholar
  63. 63.
    F.J. Owens, V. Stepanov, J. Exp. Nanosci. 3, 41 (2008)CrossRefGoogle Scholar
  64. 64.
    C. Chouly, D. Pouliquen, I. Lucet, J.J. Jeune, P. Jallet, J. Microencapsul. 13, 245 (1996)CrossRefGoogle Scholar
  65. 65.
    C.L. Chien, J.Q. Xiao, J.S. Jiang, J. Appl. Phys. 73, 5309 (1993)CrossRefGoogle Scholar
  66. 66.
    Q.Z. Xue, X. Zhang, Phys. Lett. A 313, 461 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Z. Sheykhifard
    • 1
  • S. Majid Mohseni
    • 1
  • B. Tork
    • 1
  • M. R. Hajiali
    • 2
  • L. Jamilpanah
    • 1
  • B. Rahmati
    • 1
  • F. Haddadi
    • 1
  • M. Hamdi
    • 1
  • S. Morteza Mohseni
    • 1
  • M. Mohammadbeigi
    • 1
  • A. Ghaderi
    • 1
  • S. Erfanifam
    • 1
  • M. Dashtdar
    • 1
  • F. Feghhi
    • 3
  • N. Ansari
    • 3
  • S. Pakdel
    • 4
  • M. Pourfath
    • 4
  • A. Hosseinzadegan
    • 5
  • M. Bahreini
    • 5
  • S. H. Tavassoli
    • 5
  • M. Ranjbar
    • 6
  • S. A. H. Banuazizi
    • 7
  • S. Chung
    • 7
    • 8
  • J. Akerman
    • 7
    • 8
  • N. Nikkam
    • 9
  • A. Sohrabi
    • 10
    • 11
  • S. E. Roozmeh
    • 2
  1. 1.Faculty of PhysicsShahid Beheshti UniversityTehranIran
  2. 2.Department of PhysicsUniversity of KashanKashanIran
  3. 3.Department of PhysicsAlzahra UniversityTehranIran
  4. 4.School of Electrical and Computer EngineeringUniversity of TehranTehranIran
  5. 5.Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran
  6. 6.School of Electrical, Computer and Energy EngineeringArizona State UniversityTempeUSA
  7. 7.Materials and Nano Physics, School of ICTKTH Royal Institute of TechnologyKistaSweden
  8. 8.Department of PhysicsUniversity of GothenburgGothenburgSweden
  9. 9.Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
  10. 10.Fouman Faculty of Engineering, College of EngineeringUniversity of TehranFoumanIran
  11. 11.RACED Advanced Technology DevelopmentTehranIran

Personalised recommendations