Skip to main content

Advertisement

Log in

Facile scalable synthesis of ordered macroporous few-layer MoS2 and carbon hybrid nanoarchitectures with sodium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heterogeneous interfaces interaction and multiscale nanostructures in two-dimensional (2D) materials hybrids are critically significant for realizing rate capability and long-life cycling performance. However, to strike a balance between minimizing the carbon content and maximizing the heterogeneous interfaces remains a critical challenge in nanoarchitectures for hybrid few-layers MoS2 with various carbonaceous materials. Here we present the ordered macroporous few-layered MoS2/C hybrid nanoarchitectures via a facile scalable in situ hybridization and spatial confinement strategies. Such hybrid strategies can maximize the MoS2 loading and restriction of MoS2 to a ultrasmall reaction. The optimized as-prepared hierarchical MoS2/C hybrids exhibit an initial capacity up to 631.2 mAh g−1 with a high first columbic efficiency of 81.16% for sodium-ion batteries (BILs) at 200 mA g−1. And, the electrodes display a high reversible capacity of 330.4 mAh g−1 with a long cycle life, superior cycling stability and excellent high-rate performance demonstrated rational designed hybrid architecture using as the electrodes in SIBs. This strategy could be proven to be an effective method for stabilizing the cyclability and improving in rechargeable rate performance for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Liu, H. Lv, H. Liu, Q. Li, H. Zhao, Two dimensional MoS2/CNT hybrid ink for paper-based capacitive energy storage. J. Mater. Sci.-Mater. Electron 28(12), 1–8 (2017)

    Article  Google Scholar 

  2. X. Ma, X.J. Zhao, J. Hao, C. Chi, X. Liu, Y. Li, S. Liu, K. Zhang, Improved cycling stability of MoS2-coated carbon nanotubes on graphene foam as a flexible anode for lithium-ion batteries. New J. Chem. 41(2), 588–593 (2016)

    Article  Google Scholar 

  3. Y. Li, X. Wu, J. Song, J. Li, Q. Shao, N. Cao, N. Lu, Z. Guo, Reparation of recycled acrylonitrile-butadiene-styrene by pyromellitic dianhydride: reparation performance evaluation and property analysis. Polymer 124, 41–47 (2017)

    Article  Google Scholar 

  4. K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, R. Fan, D. Cao, Z. Guo, Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125, 50–57 (2017)

    Article  Google Scholar 

  5. X. Zhang, H. Gao, M. Guo, G. Li, Y. Liu, D. Li, A study on key technologies of unmanned driving. Caai Trans. Intell. Technol. 1(1), 4–13 (2016)

    Article  Google Scholar 

  6. S. Padhy, S. Panda, A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles. Caai Trans. Intell. Technol. 2, 12–25 (2017)

    Article  Google Scholar 

  7. X. Xiang, F. Pan, Y. Li, A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials. Adv. Compos. Hybrid. Mater. (2017). https://doi.org/10.1007/s42114-017-0001-6

    Google Scholar 

  8. S. Aqeel, Z. Huang, J. Walton, C. Baker, D. Falkner, Z. Liu, Z. Wang, Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv. Compos. Hybrid. Mater. 7100, 1–8 (2017)

    Google Scholar 

  9. Z. Sun, L. Zhang, F. Dang, Y. Liu, Z. Fei, Q. Shao, H. Lin, J. Guo, L. Xiang, N. Yerra, Z. Guo, Experimental and simulation understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm 19(24), 3288 (2017)

    Article  Google Scholar 

  10. T. Liu, K. Yu, L. Gao, H. Chen, N. Wang, L. Hao, T. Li, H. He, Z. Guo, Graphene quantum dots decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J. Mater. Chem. A 5(34), 17848–17855 (2017)

    Article  Google Scholar 

  11. G. Huang, T. Chen, W. Chen, Z. Wang, K. Chang, L. Ma, F. Huang, D. Chen, J.Y. Lee, Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 9(21), 3693–3703 (2013)

    Article  Google Scholar 

  12. Y. Xu, M. Zhou, Y. Lei, Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Adv. Energy Mater. 6(10), 1502514 (2016)

    Article  Google Scholar 

  13. K. Zhang, G. Li, L. Feng, N. Wang, J. Guo, K. Sun, K. Yu, J. Zeng, T. Li, Z. Guo, M. Wang, Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J. Mater. Chem. C 5(36), 9359–9369 (2017)

    Article  Google Scholar 

  14. X. Lou, C. Lin, Q. Luo, J. Zhao, B. Wang, J. Li, Q. Shao, X. Guo, N. Wang, Z. Guo, Crystal-structure modification enhanced FeNb11O29 anodes for lithium-ion batteries. ChemElectroChem 4, 1–11 (2017)

    Article  Google Scholar 

  15. Y. Zheng, Y. Zheng, S. Yang, Z. Guo, T. Zhang, H. Song, Q. Shao, Esterification synthesis of ethyl oleate catalyzed by Brønsted acid–surfactant-combined ionic liquid. Green Chem. Lett. Rev. 10(4), 202–209 (2017)

    Article  Google Scholar 

  16. L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164(9), H651-H656 (2017)

    Google Scholar 

  17. C. Wang, Y. Wu, Y. Li, Q. Shao, X. Yan, C. Han, Z. Wang, Z. Liu, Z. Guo, Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polym. Adv. Technol. (2017). https://doi.org/10.1002/pat.4105

    Google Scholar 

  18. W. Yang, X. Wang, J. Li, X. Yan, S. Ge, S. Tadakamalla, Z. Guo, Polyoxymethylene/ethylene butylacrylate copolymer/ethylene-methyl acrylate-glycidyl methacrylate ternary blends. Polym. Eng. Sci. (2017) https://doi.org/10.1002/pen.24675

    Google Scholar 

  19. T. Wang, S. Chen, H. Pang, H. Xue, Y. Yu, MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 4(2), 1600289 (2017)

    Article  Google Scholar 

  20. B. Jache, J.O. Binder, T. Abe, P. Adelhelm, A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. Phys. Chem. Chem. Phys. 18(21), 14299–14316 (2016)

    Article  Google Scholar 

  21. F. Tu, X. Xu, P. Wang, L. Si, X. Zhou, J. Bao, A few-layer SnS2/reduced graphene oxide sandwich hybrid for efficient sodium storage. J. Phys. Chem. C 121(6), 3261–3269 (2017)

    Article  Google Scholar 

  22. Y. Du, X. Zhu, X. Zhou, L. Hu, Z. Dai, J. Bao, Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage. J. Mater. Chem. A 3(13), 6787–6791 (2015)

    Article  Google Scholar 

  23. X. Zhou, L. Wan, Y. Guo, Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chem. Commun. 49(18), 1838–1840 (2013)

    Article  Google Scholar 

  24. Y. Zhang, S. Zhao, X. Zeng, TiO2–MoS2 hybrid nano composites with 3D network architecture as binder-free flexible electrodes for lithium ion batteries. J. Mater. Sci.-Mater. Electron 28(13), 1–9 (2017)

    Google Scholar 

  25. Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L. Zhao, X. Du, Z. Du, P. Lv, K. Swierczek, MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano. 10(9), 8526–8535 (2016)

    Article  Google Scholar 

  26. J. Deng, H. Li, S. Wang, D. Ding, M. Chen, C. Liu, Z. Tian, K.S. Novoselov, C. Ma, D. Deng, X. Bao, Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 8, 14430 (2017)

    Article  Google Scholar 

  27. K. Zhang, M. Wang, X. Ma, H. Zhang, S. Hou, J. Zhao, X. Li, L. Qiang, Y. Li, Three dimensional molybdenum oxide/polyaniline hybrid nanosheet networks with outstanding optical and electrochemical properties. New J. Chem. 41(19), 10872–10879 (2017)

    Article  Google Scholar 

  28. Y. Liu, X. Wang, X. Song, Y. Dong, L. Yang, L. Wang, D. Jia, Z. Zhao, J. Qiu, Interlayer expanded MoS2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries. Carbon 109, 461–471 (2016)

    Article  Google Scholar 

  29. Z. Shi, W. Kang, J. Xu, Y. Sun, M. Jiang, T. Ng, H. Xue, D.Y.W. Yu, W. Zhang, C. Lee, Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22, 27–37 (2016)

    Article  Google Scholar 

  30. F. Zheng, Q. Pan, C. Yang, X. Xiong, X. Ou, R. Hu, Y. Chen, M. Liu, Sn-MoS2-C@C microspheres as a sodium-ion battery anode material with high capacity and long cycle life. Chem.-Eur. J. 23(21), 5051–5058 (2017)

    Article  Google Scholar 

  31. W. Ryu, J. Jung, K. Park, S. Kima, I. Kim, Vine-like MoS2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. Nanoscale 6(19), 10975–10981 (2014)

    Article  Google Scholar 

  32. K.J. Huang, L. Wang, J.Z. Zhang, K. Xing, Synthesis of molybdenum disulfide/carbon aerogel composites for supercapacitors electrode material application. J. Electroanal. Chem. 752, 33–40 (2015)

    Article  Google Scholar 

  33. C. Zhu, X. Mu, P.A. van Aken, Y. Yu, J. Maier, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53(8), 2152–2156 (2014)

    Article  Google Scholar 

  34. Y. Lu, Q. Zhao, N. Zhang, K. Lei, F. Li, J. Chen, Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv. Funct. Mater. 26(6), 911–918 (2016)

    Article  Google Scholar 

  35. X. Zhang, X. Li, J. Liang, Y. Zhu, Y. Qian, Synthesis of MoS2@C nanotubes via the kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries. Small 12(18), 2484 (2016)

    Article  Google Scholar 

  36. H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J.S. Moya, J. Requena, A. Mifsud, V. Fornes, Control of the photonic crystal properties of fcc-packed submicrometer SiO2 spheres by sintering. Adv. Mater. 10(6), 480 (1998)

    Article  Google Scholar 

  37. X. Huang, J. Chen, Z. Lu, H. Yu, Q. Yan, H.H. Hng, Carbon inverse opal entrapped with electrode active nanoparticles as high-performance anode for lithium-ion batteries. Sci. Rep. 3, 2317 (2013)

    Article  Google Scholar 

  38. H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, S.Z. Qiao, Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater 2(8), 970–975 (2012)

    Article  Google Scholar 

  39. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    Article  Google Scholar 

  40. X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42(5), 1934 (2013)

    Article  Google Scholar 

  41. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012)

    Article  Google Scholar 

  42. J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012)

    Article  Google Scholar 

  43. X. Liu, J. Liu, D. Zhan, J. Yan, J. Wang, D. Chao, L. Lai, M. Chen, J. Yin, Z. Shen, Repeated microwave-assisted exfoliation of expandable graphite for the preparation of large scale and high quality multi-layer graphene. RSC Adv. 3(29), 11601–11606 (2013)

    Article  Google Scholar 

  44. X. Liu, D. Chao, Q. Zhang, H. Liu, H. Hu, J. Zhao, Y. Li, Y. Huang, J. Lin, Z.X. Shen, The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading. Sci. Rep. 23, 15665–15669 (2015)

    Article  Google Scholar 

  45. Y. Ding, P. Kopold, K. Hahn, P.A. Aken, J. Maier, Y. Yu, A lamellar hybrid assembled from metal disulfide nanowall arrays anchored on a carbon layer: in situ hybridization and improved sodium storage. Adv. Mater. 28(35), 7774–7782 (2016)

    Article  Google Scholar 

  46. X. Wang, Q. Weng, Y. Yang, Y. Bando, D. Gotberg, Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chem. Soc. Rev. 45(15), 4042–4073 (2016)

    Article  Google Scholar 

  47. Y. Liu, Y. Li, H. Kang, T. Jin, L. Jiao, Design, synthesis, and energy-related applications of metal sulfides. Mater. Horiz. 3(5), 402–421 (2016)

    Article  Google Scholar 

  48. R. Shidpour, M. Manteghian, A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale 2(8), 1429–1435 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the National Natural Science Foundation of China (Nos. 51502057, 51572058, 51307046, 91216123, 51174063), the Natural Science Foundation of Heilongjiang Province (E201436), the International Science & Technology Cooperation Program of China (2013DFR10630, 2015DFE52770) and Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20132302110031), Natural Science Foundation of Heilongjiang Province of China (Grant No. E2016062), the China Postdoctoral Science Foundation (General Financial Grant No. 2014M561345), the Heilongjiang Postdoctoral Science Foundation (LBH-Z14105), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry (No. 20151098), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang province (No. 2015082), and the Open Project Program of the Key Laboratory for Photonic and Electric Band Gap Materials of the Ministry of Education of Harbin Normal University (No. PEBM201405), postdoctoral scientific research developmental fund of Henlongjiang Province (LBH-Q14144),The Research Foundation for the Returned Overseas Chinese excellent Scholars of Heilongjiang Province (No. 2015424). National Key Research & Development Program (2016YFB0303903), and the Foundation of Science and Technology on Advanced Composites in Special Environment Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiupeng Zhao, Xiaoxu Liu or Yao Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1826 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Liu, S., Zhang, K. et al. Facile scalable synthesis of ordered macroporous few-layer MoS2 and carbon hybrid nanoarchitectures with sodium-ion batteries. J Mater Sci: Mater Electron 29, 3492–3501 (2018). https://doi.org/10.1007/s10854-017-8283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8283-6

Navigation