Advertisement

Study of dielectric properties of polypyrrole/titanium dioxide and polypyrrole/titanium dioxide-MWCNT nano composites

  • V. B. Aaditya
  • B. M. Bharathesh
  • R. Harshitha
  • B. V. ChaluvarajuEmail author
  • U. P. Raghavendra
  • M. V. Murugendrappa
Article

Abstract

The polypyrrole/titanium dioxide nano composites and polypyrrole/titanium dioxide-MWCNT nano composites were synthesized by chemical polymerization technique in the presence of an ammonium persulphate (oxidizing agent). Different concentrations viz. 15, 30, 45 and 60 wt% of titanium dioxide (TiO2) as well as mixture of TiO2-MWCNT in polypyrrole (PPy) respectively were used in the present study. The nano composites have almost spherical type shaped particles which have cluster formation as confirmed from SEM photos. The XRD graphs reveal that the PPy/TiO2 (PT) nano composites have shown the semi-crystalline nature and also, the graphs indicate the changeover of the structure of PPy/TiO2-MWCNT (PTM) nano composites from amorphous to semi-crystalline nature. From the FTIR figures, shift in wavenumber towards lower side is noticed in the case of PT and PTM nano composites when compared to PPy. The dielectric properties such as dielectric constant, dielectric loss and tangent loss have shown good behavior. This reveals that, the TiO2 as well as mixture of TiO2-MWCNT particles have shown strong dependence on PPy and helps to form good composites. So, the nano composites are good dielectric materials.

Notes

Acknowledgements

The authors would like to thank the Principal, BMSCE, Bengaluru-560019 and Rajya Vokkaligara Sangha, BIT, Bengaluru-560004 for their cooperation. The authors also thank Dr. Chitra Sankar for useful discussions and the revision of the paper. The Center of Excellence in Advanced Materials Research which has all facilities at BMS College of Engineering is supported by the Technical Education Quality Improvement Program (TEQIP) of the World Bank.

References

  1. 1.
    G. Tourillon, in Handbook of Conducting Polymers, ed. by T. A. Skotheim, vol 1 (Marcel Dekker, New York, 1986), p. 293Google Scholar
  2. 2.
    B. Scrosati, Science and Applications of Conducting Polymers. (Chapman and Hall, London, 1993)Google Scholar
  3. 3.
    S. Jasne, Encyclopaedia of Polymer Science and Engineering. (John Wiley, New York, 1988)Google Scholar
  4. 4.
    J.O. Bockris, D. Miller, in Conducting Polymers: Special Applications, ed. by L. Alcacer (Dordrecht, Reidel, 1989)Google Scholar
  5. 5.
    A. TerjeSkotheim, R. John Reynolds, Handbook of Conducting Polymers, Conjugated polymers, 3rd edn. (CRC Press Inc, Boca Raton, 2006)Google Scholar
  6. 6.
    GyorgyInzelt, J. Solid State Electrochem. 15, 1711–1718 (2011)CrossRefGoogle Scholar
  7. 7.
    R. Struempler, J. Glatz-reichenbach, J. Electroceram. 3(4), 329–346 (1999)CrossRefGoogle Scholar
  8. 8.
    O. Robert, Ebewele, Polymer Science and Technology. (CRC Press, Boca Raton, 2000)Google Scholar
  9. 9.
    K.S. Patil, P.H. Zope, IJESRT 4(9), 494–498 (2015)Google Scholar
  10. 10.
    G. ShipraMital, T. Manoj, Phy. Chem. Chin. Sci. Bull. 56(16), 1639–1657 (2011)CrossRefGoogle Scholar
  11. 11.
    Z. Senic, S. Bauk, M. Vitorovic-Todorovic, N. Pajic, A. Samolov, D. Rajic, Sci. Tech. Rev. 61(3–4), 63–72 (2011)Google Scholar
  12. 12.
    M.M. Ba-Abbad, A.A. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, J. Electrochem. Sci. 7, 4871–4888 (2012)Google Scholar
  13. 13.
    M.R. Karim, J.H. Yeum, M.S. Lee, K.T. Lim, React. Funct. Polym. 68, 1371–1376 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Pan, X. Wang, S. Xio, L. Yu, Z. Zang, Indian J. Eng. Mater. Sci. 20, 561–567 (2013)Google Scholar
  15. 15.
    L. Tilstra, S.A. Broughton, R. Tanke, The Science of Nanotechnology: An Introductory Text. (Nova Science Publishers, Inc., New York, 2008)Google Scholar
  16. 16.
    E.L. Wolf, Nanophysics and Nanotechnology, (Wiley-VchVerlag GmbH & Co., Weinheim, 2004)Google Scholar
  17. 17.
    B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, J. Mater. Sci. 27(1), 1044–1055 (2016)Google Scholar
  18. 18.
    J. Harreld, H.P. Wong, B.C. Dave, B. Dunn, L.F. Nazar, J. Non-Crystalline Solids 225, 319–324 (1998)CrossRefGoogle Scholar
  19. 19.
    S. Kazim, S. Ahmad, J. Pfleger, J. Plestil, Y.M. Joshi, J. Mater. Sci. 47, 420–428 (2012)CrossRefGoogle Scholar
  20. 20.
    M.V. Murugendrappa, M.V.N. Ambika Prasad, J. Appl. Poly. Sci. 103, 2797–2801 (2007)CrossRefGoogle Scholar
  21. 21.
    V.S.R. Channu, R. Holze, Ionics, 18, 495–500 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Sarmah, A. Kumar, Indian J. Phys. 85(5), 713–726 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Dahlhaus, F. Beck, J. Appl. Electrochem. 23, 957–965 (1993)CrossRefGoogle Scholar
  24. 24.
    S. Zihang Huang, H. Wang, S. Li, Z. Zhang, Tan, J. Therm. Anal. Calorim. 115, 259–266 (2014)CrossRefGoogle Scholar
  25. 25.
    T. Machappa, M.V.N. Ambika Prasad, Bull. Mater. Sci 35(1), 75–81 (2012)CrossRefGoogle Scholar
  26. 26.
    M.H. Harun, E. Saion, A. Kassim, M.Y. Hussain, I.S. Mustafa, M.A. Omer, Malays. Polym. J. 3(2), 24–31 (2008)Google Scholar
  27. 27.
    A. Rherari, M. Addou, M. Haris, J. Mater. Sci. 28(21), 15762–15767 (2017)Google Scholar
  28. 28.
    V. Jadkar, A. Pawbake, R. Waykar, A. Jadhavar, J. Mater. Sci. 28(21), 15790–15796 (2017)Google Scholar
  29. 29.
    W.B. Soltan, M.S. Lassoued, S. Ammar, T. Toupance, J. Mater. Sci. 28(21), 15826–15834 (2017)Google Scholar
  30. 30.
    P.L. Deepti, S.K. Patri, R.N.P. Choudhary, J. Mater. Sci. 28(21), 16071–16076 (2017)Google Scholar
  31. 31.
    S. Ma, Y. Liu, X. Shi, M. Zhao, D. Liu, J. Mater. Sci. 28(21), 15154–15160 (2017)Google Scholar
  32. 32.
    G. Jian Hou, J. Zhu, Zheng, Polym. Sci. 53(9–10), 546–552 (2011)Google Scholar
  33. 33.
    Z. Shen, D. Li, J. Mater. Sci. 28(18), 13257–13266 (2017)Google Scholar
  34. 34.
    M. Jose, M. Elakiya, S.A. Martin Britto Dhas, J. Mater. Sci. 28(18), 13649–13658 (2017)Google Scholar
  35. 35.
    B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, Polym. Sci. 56(6), 935–939 (2014)Google Scholar
  36. 36.
    O.G. Abdullah, R.R. Hanna, Y.A. Salman, J. Mater. Sci. 28(14), 10283–10294 (2017)Google Scholar
  37. 37.
    I.B. Shameem Banu, S. Divya Lakshmi, J. Mater. Sci. 28(21), 16044–16052 (2017)Google Scholar
  38. 38.
    M. Xingwei Wang, H. Yang, S. Yan, Qi, J. Mater. Sci. 28(20), 14988–14995 (2017)Google Scholar
  39. 39.
    F. Movlud Valian, M. Beshkar, Salavati-Niasari, J. Mater. Sci. 28(20), 14996–15003 (2017)Google Scholar
  40. 40.
    T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, J. Mater. Sci. 28(20), 15074–15080 (2017)Google Scholar
  41. 41.
    B.V. Chaluvaraju, K. Sangappa, M.V. Ganiger, Murugendrappa, Polym. Sci. 57(4), 467–472 (2015)Google Scholar
  42. 42.
    B.K. Das, T. Das, K. Parashar, A. Thirumurugan, S.K.S. Parashar, J. Mater. Sci. 28(20), 15127–15134 (2017)Google Scholar
  43. 43.
    A. Bikram Singh, M. Thakur, S.K. Kumar, D. Verma, Jasrotia, J. Mater. Sci. 28(14), 10007–10011 (2017)Google Scholar
  44. 44.
    X. Ye Yuan, H. Qian, Y. Han, Chen, J. Mater. Sci. 28(14), 10028–10034 (2017)Google Scholar
  45. 45.
    B. Mohanbabu, R. Bharathikannan, G. Siva, J. Mater. Sci. 28(18), 13740–13749 (2017)Google Scholar
  46. 46.
    M. Kheirollah Mohammadi, R. Sadeghi, Azimirad, J. Mater. Sci. 28(14), 10042–10047 (2017)Google Scholar
  47. 47.
    F. Farzad Namvar, M. Beshkar, S. Salavati-Niasari, Bagheri, J. Mater. Sci. 28(14), 10313–10320 (2017)Google Scholar
  48. 48.
    N. Naveen Kumar, S. Bastola, R. Kumar, Ranjan, J. Mater. Sci. 28(14), 10420–10426 (2017)Google Scholar
  49. 49.
    S. Bhavani, M. Ravi, Y. Pavani, V. Raja, R.S. Karthikeya, V.V.R.N. Rao, J. Mater. Sci. 28(18), 13344–13349 (2017)Google Scholar
  50. 50.
    Z. Qingguo Chi, C. Gao, Y. Zhang, Cui, J. Mater. Sci. 28(20), 15142–15148 (2017)Google Scholar
  51. 51.
    E. Krissana Prompa, T. Swatsitang, Putjuso, J. Mater. Sci. 28(20), 15033–15042 (2017)Google Scholar
  52. 52.
    S. Halder, K. Parida, S.N. Das, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. 28(21), 631–637 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • V. B. Aaditya
    • 1
  • B. M. Bharathesh
    • 2
  • R. Harshitha
    • 3
  • B. V. Chaluvaraju
    • 3
    Email author
  • U. P. Raghavendra
    • 3
  • M. V. Murugendrappa
    • 4
    • 5
  1. 1.Chalmer’s University of TechnologyGöteborgSweden
  2. 2.KTH Royal Institute of TechnologyStockholmSweden
  3. 3.Department of PhysicsBangalore Institute of TechnologyBengaluruIndia
  4. 4.Department of PhysicsBMS College of EngineeringBengaluruIndia
  5. 5.Center of Excellence in Advanced Materials ResearchBMS College of EngineeringBengaluruIndia

Personalised recommendations