Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye

  • Mina Sorbiun
  • Ebrahim Shayegan Mehr
  • Ali RamazaniEmail author
  • Saeid Taghavi Fardood


Silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and bimetallic silver/zinc oxide nanoparticles (Ag/ZnO NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extracts of the oak fruit hull (Jaft) were found to reduce the metal ions to form bimetallic Ag/ZnO and then stabilise them by preventing further aggregation. Aqueous extract from the oak fruit hull (Jaft) was used as reducing and capping agents. FT-IR spectroscopy, X-ray diffraction (XRD) pattern and field emission scanning electron microscopy (FESEM) have been used in the characterization of the nanoparticles thus prepared. The XRD patterns of bimetallic Ag/ZnO alloy nanoparticles displayed crystallinity with observed diffraction peaks corresponding to Ag and ZnO. The bimetallic Ag/ZnO has an average particle size of 19.2 nm (FESEM). ZnO NPs and Ag/ZnO NPs were then used to degrade Basic violet 3 in aqueous solution. It took only 30 min for Ag/ZnO to decolorize 79% of Basic violet 3 while for ZnO it took more than 90 min to decolorize the similar amount of Basic violet 3. This one-step strategy using Jaft aqueous extract to synthesize Ag/ZnO NPs is simple, clean-green, cost-effective and environmentally benign, making possible the large-scale production of bimetallic Ag/ZnO NPs for field remediation.


  1. 1.
    A. Zaleska-Medynska, M. Marchelek, M. Diak, E. Grabowska, Adv. Colloid Interface Sci. 229, 80 (2016)CrossRefGoogle Scholar
  2. 2.
    B.M. Rajbongshi, A. Ramchiary, B.M. Jha, S.K. Samdarshi, J. Mater. Sci. 25, 2969 (2014)Google Scholar
  3. 3.
    Y.-C. Chen, J. Cheng, J. Cheng, S. Cheng, J. Mater. Sci. 26, 2775 (2015)Google Scholar
  4. 4.
    A.H. Shah, M. Basheer Ahamed, E. Manikandan, R. Chandramohan, M. Iydroose, J. Mater. Sci. 24, 2302 (2013)Google Scholar
  5. 5.
    M.M. Momeni, M. Mirhosseini, N. Mohammadi, J. Mater. Sci. 27, 6542 (2016)Google Scholar
  6. 6.
    T.M.S. Rosbero, D.H. Camacho, J. Environ. Chem. Eng. 5, 2524 (2017)CrossRefGoogle Scholar
  7. 7.
    Y.-C. Chen, F.-C. Zheng, Y.-L. Min, T. Wang, Y.-G. Zhang, Y.-X. Wang, J. Mater. Sci. 23, 1592 (2012)Google Scholar
  8. 8.
    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 801 (1994)Google Scholar
  9. 9.
    S. Taghavi Fardood, A. Ramazani, S. Moradi, Chem. J. Mold. 12, 115 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Taghavi Fardood, A. Ramazani, Z. Golfar, S.W. Joo, J. Appl. Chem. Res. 11, 19 (2017)Google Scholar
  11. 11.
    K.P. Gattu, A.A. Kashale, K. Ghule, V.H. Ingole, R. Sharma, N.G. Deshpande, A.V. Ghule, J. Mater. Sci. 28, 13209 (2017)Google Scholar
  12. 12.
    S. Taghavi Fardood, A. Ramazani, S. Moradi, J. Sol-Gel Sci. Technol. 82, 432 (2017)CrossRefGoogle Scholar
  13. 13.
    R. Rathnasamy, P. Thangasamy, R. Thangamuthu, S. Sampath, V. Alagan, J. Mater. Sci. 28, 10374 (2017)Google Scholar
  14. 14.
    S. Taghavi Fardood, A. Ramazani, S. Moradi, P. Azimzadeh Asiabi, J. Mater. Sci. 28, 13596 (2017)Google Scholar
  15. 15.
    S. Taghavi Fardood, K. Atrak, A. Ramazani, J. Mater. Sci. 28, 10739 (2017)Google Scholar
  16. 16.
    S. Taghavi Fardood, A. Ramazani, J. Nanostruct. 6, 167 (2016)Google Scholar
  17. 17.
    Z. Aghajani, A.A. Engashte-Vahed, M.R. Zand-Monfared, J. Mater. Sci. (2017)Google Scholar
  18. 18.
    A. Ramazani, S. Taghavi Fardood, Z. Hosseinzadeh, F. Sadri, S.W. Joo, Iran. J. Catal. 7, 181 (2017)Google Scholar
  19. 19.
    D. Ding, K. Liu, S. He, C. Gao, Y. Yin, Nano Lett. 14, 6731 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, L. Yan, X. He, J. Li, D. Wang, J. Mater. Sci. 27, 5190 (2016)Google Scholar
  21. 21.
    A. Zielińska-Jurek, E. Kowalska, J.W. Sobczak, W. Lisowski, B. Ohtani, A. Zaleska, Appl. Catal. B 101, 504 (2011)CrossRefGoogle Scholar
  22. 22.
    C.-Z. Chen, Z.-W. Zhou, J. Funct. Mater. 35, 97 (2004)Google Scholar
  23. 23.
    N. Daneshvar, D. Salari, A. Khataee, J. Photochem. Photobiol. A 162, 317 (2004)CrossRefGoogle Scholar
  24. 24.
    O.A. Al-Hartomy, Mater. Sci. Semicond. Process 27, 71 (2014)CrossRefGoogle Scholar
  25. 25.
    C. Ma, X. Wang, H. Luo, D. Zhang, J. Mater. Sci. 28, 10715 (2017)Google Scholar
  26. 26.
    R. Velmurugan, B. Krishnakumar, M. Swaminathan, Mater. Sci. Semicond. Process 25, 163 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, Q. Wang, J. Xu, S. Ma, Appl. Surf. Sci. 258, 10104 (2012)CrossRefGoogle Scholar
  28. 28.
    C.H. Kwon, H. Shin, J.H. Kim, W.S. Choi, K.H. Yoon, Mater. Chem. Phys. 86, 78 (2004)CrossRefGoogle Scholar
  29. 29.
    D. Tingfa, Thermochim. Acta 138, 189 (1989)CrossRefGoogle Scholar
  30. 30.
    N. Yıldız, Ç. Ateş, M. Yılmaz, D. Demir, A. Yıldız, A. Çalımlı, Green Process Synth. 3, 259 (2014)Google Scholar
  31. 31.
    J. Das, P. Velusamy, Mater. Res. Bull. 48, 4531 (2013)CrossRefGoogle Scholar
  32. 32.
    G. Parthasarathy, M. Saroja, M. Venkatachalam, V. Evanjelene, Int. J. Mater. Sci. 12, 73 (2017)Google Scholar
  33. 33.
    R. Sathyavathi, M.B. Krishna, S.V. Rao, R. Saritha, D.N. Rao, Adv. Sci. Lett. 3, 138 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Ramana, EJAE 1, 5 (2014)Google Scholar
  35. 35.
    A.M. Awwad, B. Albiss, A.L. Ahmad, Adv. Mater. Lett. 5, 520 (2014)CrossRefGoogle Scholar
  36. 36.
    N. Kumari, A. Ghosh, A. Bhattacharjee, Mater. Sci. Semicond. Process 19, 114 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Mina Sorbiun
    • 1
  • Ebrahim Shayegan Mehr
    • 1
  • Ali Ramazani
    • 1
    Email author
  • Saeid Taghavi Fardood
    • 1
  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran

Personalised recommendations