Dy2O3/CuO nanocomposites: microwave assisted synthesis and investigated photocatalytic properties

  • Syed Alireza Mousavi
  • Mohammad Hassanpour
  • Masoud Salavati-NiasariEmail author
  • Hossein Safardoust-Hojaghan
  • Masood Hamadanian


Dy2O3/CuO nanocomposites were synthesized by rapid and fast microwave method in polyol solvent. Effect of time and power of microwave irradiation and type of solvent on size and morphology were investigated. Synthesized Dy2O3/CuO is characterized with X-ray diffraction (XRD) analysis, Transmission Electron Microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM) and UV–Visible absorption spectroscopy. Photocatalytic properties for two color, methylene blue and rhodamin b under ultraviolet light irradiation were done and 54 and 47.7% degradation for MB and RB respectively.



Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No. (159271/892290).


  1. 1.
    F. Soofivand, F. Mohandes, M. Salavati-Niasari, Silver chromate and silver dichromate nanostructures: sonochemical synthesis, characterization, and photocatalytic properties. Mater. Res. Bull. 48, 2084–2094 (2013)CrossRefGoogle Scholar
  2. 2.
    F. Ansari, A. Sobhani, M. Salavati-Niasari, Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol–gel auto-combustion process. J. Magn. Magn. Mater. 401, 362–369 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Safardoust-Hojaghan, M. Salavati-Niasari, O. Amiri, M. Hassanpour, Preparation of highly luminescent nitrogen doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli. J. Mol. Liq. 241, 1114–1119 (2017)CrossRefGoogle Scholar
  4. 4.
    F. Ansari, A. Sobhani, M. Salavati-Niasari, Sol–gel auto-combustion synthesis of PbFe12O19 using maltose as a novel reductant. RSC Adv. 4, 63946–63950 (2014)CrossRefGoogle Scholar
  5. 5.
    R.J. Cava, Oxide superconductors. J. Am. Ceram. Soc. 83 5–28 (2000)CrossRefGoogle Scholar
  6. 6.
    A.A. Eliseev, A.V. Lukashin, A.A. Vertegel, L.I. Heifets, A.I. Zhirov, Y.D. Tretyakov, Complexes of Cu(II) with polyvinyl alcohol as precursors for the preparation of CuO/SiO2 nanocomposites. Mater. Res. Innovations 3, 308–312 (2000)CrossRefGoogle Scholar
  7. 7.
    J. Xu, W. Ji, Z. Shen, S. Tang, X. Ye, D. Jia, X. Xin, Preparation and characterization of CuO nanocrystals. J. Solid State Chem. 147, 516–519 (1999)CrossRefGoogle Scholar
  8. 8.
    K. Borgohain, J. Singh, M.R. Rao, T. Shripathi, S. Mahamuni, Quantum size effects in CuO nanoparticles. Phys. Rev. B 61, 11093 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Salavati-Niasari, F. Davar, Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor. Mater. Lett. 63, 441–443 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Wang, J.-Z. Xu, J.-J. Zhu, H.-Y. Chen, Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth 244, 88–94 (2002)CrossRefGoogle Scholar
  11. 11.
    J. Morales, L. Sanchez, F. Martin, J. Ramos-Barrado, M. Sanchez, Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 474, 133–140 (2005)CrossRefGoogle Scholar
  12. 12.
    V. Katti, A. Debnath, K. Muthe, M. Kaur, A. Dua, S. Gadkari, S. Gupta, V. Sahni, Mechanism of drifts in H2S sensing properties of SnO2: CuO composite thin film sensors prepared by thermal evaporation. Sens. Actuators, B 96, 245–252 (2003)CrossRefGoogle Scholar
  13. 13.
    P.-O. Larsson, A. Andersson, L.R. Wallenberg, B. Svensson, Combustion of CO and toluene; characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide. J. Catal. 163, 279–293 (1996)CrossRefGoogle Scholar
  14. 14.
    M. Hassanpour, H. Safardoust, D. Ghanbari, M. Salavati-Niasari, Microwave synthesis of CuO/NiO magnetic nanocomposites and its application in photo-degradation of methyl orange. J. Mater. Sci. 27, 2718–2727 (2016)Google Scholar
  15. 15.
    Y. Chen, L. Yang, C. Feng, L.-P. Wen, Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochem. Biophys. Res. Commun. 337, 52–60 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Gao, Y. Zhao, W. Yang, J. Tian, F. Guan, Y. Ma, J. Hou, J. Kang, Y. Wang, Preparation of samarium oxide nanoparticles and its catalytic activity on the esterification. Mater. Chem. Phys. 77, 65–69 (2003)CrossRefGoogle Scholar
  17. 17.
    S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J. Mol. Liq. 231, 306–313 (2017)CrossRefGoogle Scholar
  18. 18.
    F. Zhang, S.-W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl. Phys. Lett. 80(1), 127–129 (2002)CrossRefGoogle Scholar
  19. 19.
    G.B. Kumar, S. Buddhudu, Synthesis and emission analysis of RE3+(Eu3+ or Dy3+): Li2 TiO3 ceramics. Ceram. Int. 35, 521–525 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Kuang, Y. Liu, J. Zhang, White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3. J. Solid State Chem. 179, 266–269 (2006)CrossRefGoogle Scholar
  21. 21.
    J.-G. Kang, J.S. Gwag, Y. Sohn, Synthesis and characterization of Dy(OH)3 and Dy2O3 nanorods and nanosheets. Ceram. Int. 41, 3999–4006 (2015)CrossRefGoogle Scholar
  22. 22.
    T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, S. Yoshikawa, A simple route utilizing surfactant-assisted templating sol–gel process for synthesis of mesoporous Dy2O3 nanocrystal. J. Colloid Interface Sci. 300, 219–224 (2006)CrossRefGoogle Scholar
  23. 23.
    H. Xiao, P. Li, F. Jia, L. Zhang, General nonaqueous sol–gel synthesis of nanostructured Sm2O3, Gd2O3, Dy2O3, and Gd2O3: Eu3+ phosphor. J. Phys. Chem. C 113, 21034–21041 (2009)CrossRefGoogle Scholar
  24. 24.
    M. Chandrasekhar, H. Nagabhushana, K. Sudheerkumar, N. Dhananjaya, S. Sharma, D. Kavyashree, C. Shivakumara, B. Nagabhushana, Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes. Mater. Res. Bull. 55, 237–245 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Safari-Amiri, S. Mortazavi-Derazkola, M. Salavati-Niasari, S.M. Ghoreishi, Synthesis and characterization of Dy2O3 nanostructures: enhanced photocatalytic degradation of rhodamine B under UV irradiation. J. Mater. Sci. 28, 6467–6474 (2017)Google Scholar
  26. 26.
    M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, Rapid and eco-friendly synthesis of NiO/ZnO nanocomposite and its application in decolorization of dye. J. Mater. Sci. 1–8 (2017)Google Scholar
  27. 27.
    M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J. Mol. Liq. 229, 293–299 (2017)CrossRefGoogle Scholar
  28. 28.
    F. Riboni, M.V. Dozzi, M.C. Paganini, E. Giamello, E. Selli, Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid oxidation. Catal. Today 287, 176–181 (2017)CrossRefGoogle Scholar
  29. 29.
    A.O. Juma, E.A. Arbab, C.M. Muiva, L.M. Lepodise, G.T. Mola, Synthesis and characterization of CuO–NiO–ZnO mixed metal oxide nanocomposite. J. Alloys Compd. 723, 866–872 (2017)CrossRefGoogle Scholar
  30. 30.
    M. Umadevi, A.J. Christy, Synthesis, characterization and photocatalytic activity of CuO nanoflowers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 109, 133–137 (2013)CrossRefGoogle Scholar
  31. 31.
    N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan, A. Mondal, CuO nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 65, 3248–3250 (2011)CrossRefGoogle Scholar
  32. 32.
    L.J. Wang, Q. Zhou, Y. Liang, H. Shi, G. Zhang, B. Wang, W. Zhang, B. Lei, W.Z. Wang, Size effect and enhanced photocatalytic activity of CuO sheet-like nanostructures prepared by a room temperature solution phase chemical method. Appl. Surf. Sci. 271, 136–140 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, A. Yeganeh-Faal, Nano-sized CuO/ZnO hollow spheres: synthesis, characterization and photocatalytic performance. J. Mater. Sci: Mater. Electron. 28, 14678–14684 (2017)Google Scholar
  34. 34.
    M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J. Alloys Compd. 509, 4098–4103 (2011)CrossRefGoogle Scholar
  35. 35.
    D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J. Ind. Eng. Chem. 20, 3970–3974 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Star-shaped PbS nanocrystals prepared by hydrothermal process in the presence of thioglycolic acid. Polyhedron 35, 149–153 (2012)CrossRefGoogle Scholar
  37. 37.
    M. Salavati-Niasari, F. Mohandes, F. Davar, Preparation of PbO nanocrystals via decomposition of lead oxalate. Polyhedron 28, 2263–2267 (2009)CrossRefGoogle Scholar
  38. 38.
    M. Salavati-Niasari, M. Shakouri-Arani, F. Davar, Flexible ligand synthesis, characterization and catalytic oxidation of cyclohexane with host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of tetrahydro-salophen) nanocomposite materials. Microporous Mesoporous Mater. 116, 77–85 (2008)CrossRefGoogle Scholar
  39. 39.
    M. Salavati-Niasari, Host (nanocavity of zeolite-Y)–guest (tetraaza [14] annulene copper (II) complexes) nanocomposite materials: synthesis, characterization and liquid phase oxidation of benzyl alcohol. J. Mol. Catal. A 245, 192–199 (2006)CrossRefGoogle Scholar
  40. 40.
    M. Salavati-Niasari, Synthesis and characterization of host (nanodimensional pores of zeolite-Y)–guest [unsaturated 16-membered octaaza–macrocycle manganese (II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials. Chem. Lett. 34, 1444–1445 (2005)CrossRefGoogle Scholar
  41. 41.
    M. Salavati-Niasari, F. Farzaneh, M. Ghandi, Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalyzed by alumina-supported manganese (II) complexes. J. Mol. Catal. A 186, 101–107 (2002)CrossRefGoogle Scholar
  42. 42.
    M. Salavati-Niasari, F. Davar, M. Mazaheri, Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis (salicylidene) zinc (II)]. J. Alloys Compd. 470, 502–506 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Salavati-Niasari, Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes. Inorg. Chem. Commun. 8, 174–177 (2005)CrossRefGoogle Scholar
  44. 44.
    M. Salavati-Niasari, Nanodimensional microreactor-encapsulation of 18-membered decaaza macrocycle copper (II) complexes. Chem. Lett. 34 (2005) 244–245CrossRefGoogle Scholar
  45. 45.
    M. Salavati-Niasari, Zeolite-encapsulation copper (II) complexes with 14-membered hexaaza macrocycles: synthesis, characterization and catalytic activity. J. Mol. Catal. A 217, 87–92 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Syed Alireza Mousavi
    • 1
  • Mohammad Hassanpour
    • 2
  • Masoud Salavati-Niasari
    • 1
    Email author
  • Hossein Safardoust-Hojaghan
    • 1
  • Masood Hamadanian
    • 1
  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  2. 2.Young Researchers and Elite Club, Sari BranchIslamic Azad UniversitySariIran

Personalised recommendations