Influence of Cu incorporation on ionic conductivity and dielectric relaxation mechanism in NiO thin films synthesized by CBD

  • M. R. Das
  • A. Mukherjee
  • P. MitraEmail author


We present the influence of copper incorporation on ionic conductivity and dielectric relaxation mechanism of NiOthin films deposited by chemical bath deposition (CBD) method in this report. Structural and optical characterization of NiO and Cu:NiO thin films were carried out using XRD and UV–Vis spectroscopy. Increase in grain size and decrease in average microstrain in doped films were confirmed from XRD analysis. The spectrophotometric measurement shows band gap decreases with increase in dopant concentration. Impedance spectroscopy, modulus spectroscopy and dielectric study has been performed for ac electrical characterization. Impedance spectroscopy analysis confirmed enhancement of ac conductivity withCu incorporation suggesting an increase in charge carrier concentration due to doping. Enhancement in both real and imaginary part of dielectric constant was observed with Cu doping in NiO thin films. Activation energy to electrical transport process was determined from dc conductivity analysis and migration energy of charge carriers was determined from modulus spectroscopy analysis. Cole–Cole plot shows both grain and grain boundary contributes towards total resistance and capacitance. The overall resistance was found to decrease with Cu incorporation in NiO thin film. The observed results suggest hopping mechanism of charge carriers towards electrical conduction process.



One of the authors (MRD) acknowledges University Grants Commission (UGC), India for proving Junior Research Fellowship (Ref. No. 21/12/2014(ii)EU-V) during the work. The authors wish to acknowledge the University Grants Commission (UGC), India, for granting Centre for Advanced Study (CAS) under the thrust area ‘‘Condensed Matter Physics including Laser applications’’ to the Department of Physics, Burdwan University (No F. 530/5/CAS/2011(SAP-I)). The authors also acknowledge Dr. A. Datta and S. Bandyopadhyay, Dept. of Physics, The University of Burdwan for recording electrical data.


  1. 1.
    E. Fortunato, D. Ginley, H. Hosono, D.C. Paine, MRS Bull. 32, 242 (2007)CrossRefGoogle Scholar
  2. 2.
    M.M. Gomaa, M. Boshta, B.S. Farag, M.B.S. Osman, J. Mater. Sci. Mater. Electron. 27, 711 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Ohta, K.I. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono, Appl. Phys. Lett. 77, 475 (2000)CrossRefGoogle Scholar
  4. 4.
    J.F. Wager, D.A. Keszler, R.E. Presley, Transparent Electronics. (Springer, New York, 2008)Google Scholar
  5. 5.
    H.L. Chen, Y.M. Lu, W.S. Hwang, Surf. Coat. Technol. 198, 138 (2005)CrossRefGoogle Scholar
  6. 6.
    X. Chen, L. Zhao, Q. Niu, J. Electron. Mater. 41, 3382 (2012)CrossRefGoogle Scholar
  7. 7.
    I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Sens. Actuators B 57, 147 (1999)CrossRefGoogle Scholar
  8. 8.
    E. Antoini, J. Mater. Sci. 27, 3335 (1992)CrossRefGoogle Scholar
  9. 9.
    U.S. Joshi, Y. Matsumoto, K. Itaka, M. Sumiya, H. Koinuma, Appl. Surf. Sci. 252, 2524 (2006)CrossRefGoogle Scholar
  10. 10.
    M.B. Dutt, R. Banerjee, A.K. Barua, Phys. Status Solidi A 65, 365 (1981)CrossRefGoogle Scholar
  11. 11.
    P.S. Patil, L.D. Kadam, Appl. Surf. Sci. 199, 211 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Bandara, C.M. Divarathne, S.D. Nanayakkara, Sol. Energy Mater. Sol. Cells 81, 429 (2004)CrossRefGoogle Scholar
  13. 13.
    I. Hotovy, L. Spiess, M. Predanocy, V. Rehacek, J. Racko, Vacuum 107, 129 (2014)CrossRefGoogle Scholar
  14. 14.
    L. Cattin, B.A. Reguig, A. Khelil, M. Morsli, K. Benchouk, J.C. Berne-de, Appl. Surf. Sci. 254, 5814 (2008)CrossRefGoogle Scholar
  15. 15.
    H. Moulki, C. Faure, M. Mihelcic, A. Surca Vuk, F. Svegl, B. Orel, G. Campet, A.V. Chadwick, D. Gianolio, A. Rougier, M. Alfredsson, Thin Solid Films 553, 63 (2004)CrossRefGoogle Scholar
  16. 16.
    J.F. Wager, Science 300, 1245 (2003)CrossRefGoogle Scholar
  17. 17.
    L. Zhao, G. Su, W. Liu, L. Cao, J. Wang, Z. Dong, M. Song, Appl. Surf. Sci. 257, 3974 (2011)CrossRefGoogle Scholar
  18. 18.
    Y.M. Lu, W.S. Hwang, J.S. Yang, Surf. Coat. Technol. 155, 231 (2002)CrossRefGoogle Scholar
  19. 19.
    I. Valyukh, S. Green, H. Arwin, G.A. Niklasson, E. Wäckelgard, C.G. Granqvist, Sol. Energy Mater Sol. Cells 94, 724 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Kang, S. Rhee, Thin Solid Films 391, 57 (2001)CrossRefGoogle Scholar
  21. 21.
    A.M. Galvan, M.A. Hurtado, A.M. Beltran, Thin Solid Films 517, 3115 (2009)CrossRefGoogle Scholar
  22. 22.
    M.A. Hurtado, A.M. Galvian, Mater. Chem. Phys. 107, 33 (2008)CrossRefGoogle Scholar
  23. 23.
    F. Vera, R. Schrebler, E. Munoz, C. Suarez, P. Cury, A. Gomez, R. Cordova, R.E. Marotti, E.A. Dalchiele, Thin Solid Films 490, 182 (2005)CrossRefGoogle Scholar
  24. 24.
    X. Wang, Z. Wei, J. Adv. Microsc. Res. 10, 24 (2015)CrossRefGoogle Scholar
  25. 25.
    E.O. Zayim, I. Turhan, F.Z. Tepehan, N. Ozer, Sol. Energy Mater. Sol. Cells 92, 164 (2008)CrossRefGoogle Scholar
  26. 26.
    N.S. Das, B. Saha, R. Thapa, G.C. Das, K.K. Chattopadhyay, Physica E 42, 1377 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Jiassi, I. Sta, M. Hajji, H. Ezzaouia, Mater. Sci. Semicond. Process. 21, 7 (2014)CrossRefGoogle Scholar
  28. 28.
    S.J. Ikhmayies, R.N. Ahmad-Bitar, J. Mater. Res. Technol. 2, 221 (2013)CrossRefGoogle Scholar
  29. 29.
    K. Sato, S. Kim, S. Komuro, X. Zhao, Jpn. J. Appl. Phys. 55, 06GJ10 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Manimenaka, G. Umadevi, M. Manickam, Mat. Chem. Phys. 191, 181 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Moghe, A.D. Acharya, R. Panda, S.B. Shrivastava, M. Gangrade, T. Shripathi, V. Ganesan, Renewable Energy 46, 43 (2012)CrossRefGoogle Scholar
  32. 32.
    D. Ellis, S. Irvine, J. Mater. Sci. 15, 369 (2004)Google Scholar
  33. 33.
    M. Dhanam, R.P. Rajeev, P.K. Manoj, Mater. Chem. Phys. 107, 289 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Tauc, Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974), pp. 159–220CrossRefGoogle Scholar
  35. 35.
    K. Mageshwari, R. Sathyamoorthy, Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater. Sci. Semicond. Process. 16, 337 (2013)CrossRefGoogle Scholar
  36. 36.
    F. Urbach, Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  37. 37.
    G. Kumar, S. Sharma, R.K. Kotnala, J. Shah, S.E. Shirsath, K.M. Batoo, M. Singh, J. Mol. Struct. 1051, 336–344 (2013)CrossRefGoogle Scholar
  38. 38.
    T. Veeramanikandasamy, K. Rajendran, K. Sambath, P. Rameshbabu, Mater. Chem. Phys. 171, 328 (2016)CrossRefGoogle Scholar
  39. 39.
    M.M. El-Nahass, A.F. El-Deeb, F. Salam, Org. Electron. 7, 261 (2006)CrossRefGoogle Scholar
  40. 40.
    E.A.A. Jarvis, E.A. Carter, J. Phys. Chem. B 106, 7995 (2002)CrossRefGoogle Scholar
  41. 41.
    A.K. Jonscher, Nature 256, 673–679 (1977)CrossRefGoogle Scholar
  42. 42.
    A.K. Roy, A. Singh, K. Kumari, K. Amar Nath, A. Prasad, K. Prasad, ISRN Ceram. (2012)Google Scholar
  43. 43.
    K. Funke, Prog. Solid State Chem. 22, 111 (1993)CrossRefGoogle Scholar
  44. 44.
    S.R. Elliot, Adv. Phys. 36, 135 (1987)CrossRefGoogle Scholar
  45. 45.
    A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Appl. Phys. Lett. 73, 2039 (1998)CrossRefGoogle Scholar
  46. 46.
    A.A. Youssef Ahmed, Z. Naturforsch. 57, 263 (2002)Google Scholar
  47. 47.
    D.P. Almond, A.R. West, Nature 306, 456 (1983)CrossRefGoogle Scholar
  48. 48.
    K. Sankarasubramanian, P. Soundarrajan, T. Logu, S. Kiruthika, K. Sethuraman, R. RameshBabu, K. Ramamurthi, Mater. Sci. Semicond. Process. 26, 346 (2014)CrossRefGoogle Scholar
  49. 49.
    S. Brahma, R.N.P. Choudhary, A.K. Thakur, Physica B 355, 188 (2005)CrossRefGoogle Scholar
  50. 50.
    J. Suchanicz, Mater. Sci. Eng. B 55, 114 (1998)CrossRefGoogle Scholar
  51. 51.
    I. Denk, J. Claus, J. Maier, J Electrochem. Soc. 144, 3526 (1997)CrossRefGoogle Scholar
  52. 52.
    N.H. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, Int. J. Hydrogen Energy 35, 4428 (2010)CrossRefGoogle Scholar
  53. 53.
    K.C.V. Rajulu, B. Tilak, K.S. Rao, Appl. Phys. A 106, 533 (2012)Google Scholar
  54. 54.
    A. Mukherjee, P. Ghosh, A.A. Aboud, P. Mitra, Mater. Chem. Phys. 184, 101 (2016)CrossRefGoogle Scholar
  55. 55.
    J. Jose, M.A. Khadar, Nanostruct. Mater. 11, 1091 (1999)CrossRefGoogle Scholar
  56. 56.
    D. Degar, K. Ulutas, S. Yakut, H. Kara, Mater. Sci. Semicond. Process. 38, 1 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsThe University of BurdwanBurdwanIndia

Personalised recommendations