Advertisement

Simple synthesis, characterization and investigation of photocatalytic activity of NiS2 nanoparticles using new precursors by hydrothermal method

  • Faezeh Soofivand
  • Elaheh Esmaeili
  • Mohammad Sabet
  • Masoud Salavati-NiasariEmail author
Article

Abstract

In this work, nickel sulfide (NiS2) nanostructures were successfully synthesized using a new nickel source by the simple hydrothermal method. These nanostructures were produced by reacting [Ni(pht)(H2O)2] as an organometallic precursor with various sulfur sources, including: thiourea, CS2, (NH4)2S and cysteine. The effect of type of sulfur sources on the morphology and purity of products was investigated. According to the investigations, increasing the release rate of sulfur from source increased the size of products and the by-products. The products were characterized by different analyses such as: X-ray diffraction pattern (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that using massive precursors can be considered as an effective way for production of nanomaterials without using any capping agents. The optical properties of NiS2 nanostructures were studied by diffuse reflectance spectroscopy (DRS). The band gap of this product was estimated about 2.2 eV that proved this compound can be considered as a semiconductor. The obtained band gap was more than the NiS2 bulk due to the quantum effects in nanomaterials. The degradation percent of two dyes: erythrosine and phenol red dyes in the presence of this product as a photocatalyst under UV irradiation obtained about 57 and 71, respectively.

Notes

Acknowledgements

Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No. (159271/5579).

References

  1. 1.
    A.E. Reflist, O. Amiri, M. Salavati-Niasari, M. Sabet, D. Ghanbari, Mater. Sci. Semicond. Process. 16, 1485–1494 (2013)CrossRefGoogle Scholar
  2. 2.
    D. Ghanbari, M. Salavati-Niasari, M. Sabet, J. Cluster Sci. 23, 1081–1095 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Sabet, M. Salavati-Niasari, O. Amiri, Electrochim. Acta 117, 504–520 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Sabet, M. Salavati-Niasari, D. Ghanbari, O. Amiri, M. Yousefi, Mater. Sci. Semicond. Process. 16, 696–704 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Salavati-Niasari, F. Davar, H. Emadi, Chalcogenide Lett. 7, 647–655 (2010)Google Scholar
  6. 6.
    F. Davar, M.R. Loghman-Estarki, M. Salavati-Niasari, R. Ashiri, Int. J. Appl. Ceram. Technol. 11, 637–644 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Polyhedron 35, 149–153 (2012)Google Scholar
  8. 8.
    S. Amaresh, K. Karthikeyan, I.-C. Jang, Y. Lee, J. Mater. Chem. A 2, 11099–11106 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Behboudnia, M. Majlesara, B. Khanbabaee, Mater. Sci. Eng. B 122, 160–163 (2005)CrossRefGoogle Scholar
  10. 10.
    R. Gaur, P. Jeevanandam, New J. Chem. 39, 9442–9453 (2015)CrossRefGoogle Scholar
  11. 11.
    A. Ghezelbash, M.B. Sigman, B.A. Korgel, Nano Lett. 4, 537–542 (2004)CrossRefGoogle Scholar
  12. 12.
    Y. Hu, J. Chen, W. Chen, X. Lin, X. Li, Adv. Mater. 15, 726–729 (2003)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, J.C. Yu, M. Mo, L. Wu, Q. Li, K.W. Kwong, J. Am. Chem. Soc. 126, 8116–8117 (2004)CrossRefGoogle Scholar
  14. 14.
    M.J. Islam, D.A. Reddy, N.S. Han, J. Choi, J.K. Song, T.K. Kim, Phys. Chem. Chem. Phys. 18, 24984–24993 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Lee, D.A. Reddy, T.K. Kim, RSC Adv. 6, 37180–37188 (2016)CrossRefGoogle Scholar
  16. 16.
    M.J. Islam, D.A. Reddy, J. Choi, T.K. Kim, RSC Adv. 6, 19341–19350 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Choi, D.A. Reddy, M.J. Islam, R. Ma, T.K. Kim, J. Alloys Compd. 688, 527–536 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Choi, D.A. Reddy, M.J. Islam, B. Seo, S.H. Joo, T.K. Kim, Appl. Surf. Sci. 358, 159–167 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Choi, D.A. Reddy, T.K. Kim, Ceram. Int. 41, 13793–13803 (2015)CrossRefGoogle Scholar
  20. 20.
    D.A. Reddy, S. Lee, J. Choi, S. Park, R. Ma, H. Yang, T.K. Kim, Appl. Surf. Sci. 341, 175–184 (2015)CrossRefGoogle Scholar
  21. 21.
    D.A. Reddy, R. Ma, T.K. Kim, Ceram. Int. 41, 6999–7009 (2015)CrossRefGoogle Scholar
  22. 22.
    D.A. Reddy, J. Choi, S. Lee, R. Ma, T.K. Kim, RSC Adv. 5, 18342–18351 (2015)CrossRefGoogle Scholar
  23. 23.
    D.A. Reddy, R. Ma, M.Y. Choi, T.K. Kim, Appl. Surf. Sci. 324, 725–735 (2015)CrossRefGoogle Scholar
  24. 24.
    F. Soofivand, F. Mohandes, M. Salavati-Niasari, Mater. Res. Bull. 48, 2084–2094 (2013)CrossRefGoogle Scholar
  25. 25.
    F. Soofivand, M. Salavati-Niasari, RSC Adv. 5, 64346–64353 (2015)CrossRefGoogle Scholar
  26. 26.
    F. Soofivand, M. Salavati-Niasari, J. Photochem. Photobiol. A 337, 44–53 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Patterson, Phys. Rev. 56, 978 (1939)CrossRefGoogle Scholar
  28. 28.
    J. Osuwa, P. Uwaezi, Chalcogenide Lett. 8, 587–594 (2011)Google Scholar
  29. 29.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi. 15, 627–637 (1966)CrossRefGoogle Scholar
  30. 30.
    I. Ferrer, C. Sanchez, J. Mater. Process. Technol. 92, 239–242 (1999)CrossRefGoogle Scholar
  31. 31.
    K. Salehi, B. Shahmoradi, A. Bahmani, M. Pirsaheb, H. Shivaraju, Desalin. Water Treat. 57, 25256–25266 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Eskandarloo, A. Badiei, M.A. Behnajady, M. Afshar, Res. Chem. Intermed. 41, 9929–9949 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, J. Alloys Compd. 509, 4098–4103 (2011)CrossRefGoogle Scholar
  34. 34.
    D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, J. Ind. Eng. Chem. 20, 3970–3974 (2014)CrossRefGoogle Scholar
  35. 35.
    M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Polyhedron 35, 149–153 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Salavati-Niasari, F. Mohandes, F. Davar, Polyhedron 28, 2263–2267 (2009)CrossRefGoogle Scholar
  37. 37.
    M. Salavati-Niasari, M. Shakouri-Arani, F. Davar, Microporous Mesoporous Mater. 116, 77–85 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Salavati-Niasari, J. Mol. Catal. A 245, 192–199 (2006)CrossRefGoogle Scholar
  39. 39.
    M. Salavati-Niasari, Chem. Lett. 34, 1444–1445 (2005)CrossRefGoogle Scholar
  40. 40.
  41. 41.
  42. 42.
    M. Salavati-Niasari, Inorg. Chem. Commun. 8, 174–177 (2005)CrossRefGoogle Scholar
  43. 43.
    M. Salavati-Niasari, Chem. Lett. 34, 244–245 (2005)CrossRefGoogle Scholar
  44. 44.
    M. Salavati-Niasari, J. Mol. Catal. A 217, 87–92 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Faezeh Soofivand
    • 1
  • Elaheh Esmaeili
    • 2
  • Mohammad Sabet
    • 3
  • Masoud Salavati-Niasari
    • 2
    Email author
  1. 1.Young Researchers and Elite Club, Bandar Abbas BranchIslamic Azad UniversityBandar AbbasIslamic Republic of Iran
  2. 2.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  3. 3.Department of Chemistry, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIslamic Republic of Iran

Personalised recommendations