Facile synthesis of polypyrrole/carbon-coated MoO3 nanoparticle/graphene nanoribbon nanocomposite with high-capacitance applied in supercapacitor electrode

  • Feng-Hao Hsu
  • Tzong-Ming Wu


The core–shell structure of carbon-coated MoO3 (C#MoO3) nanoparticles have been prepared by using a simple hydrothermal synthesis and using in situ method to fabricate the high performance nanocomposite with polypyrrole (PPy) and graphene nanoribbon (GNR). The chemical and structural of the samples were characterized by using Fourier transform infrared (FTIR), Raman, and X-ray diffraction. The morphology of C#MoO3 nanoparticle and its nanocomposite was also observed by using high-resolution transmission electron microscopy. The electrochemical performance of prepared PPy/C#MoO3 nanoparticle/GNR nanocomposite not only present the high specific capacitance (991 F g−1) at 5 mV s−1 scan rate in a 1 M H2SO4 electrolyte but also shows the high retention (92.1%) of capacitance after 1000 charge/discharge cycles. Electrochemical impedance spectroscopy test for PPy/C#MoO3 nanoparticle/GNR nanocomposite also shows the very low charge-transfer resistance. These superior properties significantly show that the C#MoO3 nanoparticle used to fabricate the nanocomposite can further improve the specific capacitance and cycle stability. Here this paper also provides a low cost and facile process to fabricate the high performance nanocomposite as a promising electrode material for supercapacitor.



The financial support provided by Ministry of Science and Technology through the project MOST 104-2212-E-005-089-MY2 is greatly appreciated.


Funding was provided by Ministry of Science and Technology, Taiwan (Grand No. MOST 104-2212-E-005-089-MY2).


  1. 1.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mat. 7, 845–854 (2008)CrossRefGoogle Scholar
  2. 2.
    G.X. Pan, X.H. Xia, F. Cao, J. Chen, P.S. Tang, Y.J. Zhang, H.F. Chen, High-performance asymmetric supercapacitors based on core/shell cobalt oxide/carbon nanowire arrays with enhanced electrochemical energy storage. Electrochim. Acta 133, 522–528 (2014)CrossRefGoogle Scholar
  3. 3.
    E. Frakowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001)CrossRefGoogle Scholar
  4. 4.
    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)CrossRefGoogle Scholar
  5. 5.
    H.P. Oliveira, S.A. Sydlik, T.M. Swager, Supercapacitors from free-standing polypyrrole/graphene nanocomposites. J. Phy. Chem. C 117, 10270–10276 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Li, A.R.O. Raji, H.L. Fei, Y. Yang, ELG Samuel, J.M. Tour, Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl Mat Interfaces 5, 6622–6627 (2013)CrossRefGoogle Scholar
  7. 7.
    M.K. Liu, W.W. Tjiu, J.S. Pan, C. Zhang, W. Gao, T.X. Liu, One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors. Nanoscale 6, 4233–4242 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci. 26, 4347–4379 (2015)Google Scholar
  9. 9.
    F. Yang, L.B. Zhang, A. Zuzuarregui, K. Gregorczyk, L. Li, M. Beltràn, C. Tollan, J. Brede, C. Rogero, A. Chuvilin, M. Knez, Functionalization of defect sites in graphene with RuO2 for high capacitive performance. ACS Appl. Mat. Interfaces 7, 20513–20519 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Pan, H.T. Gu, L. Dong, Synthesis and electrochemical performance of polyaniline @MnO2/graphene ternary composites for electrochemical supercapacitors. J. Power Sources 303, 175–181 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Zhang, X.S. Zhao, Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phy. Chem. C 116, 5420–5426 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Li, G. Louarn, P.H. Aubert, V. Alain-Rizzo, L. Galmiche, P. Audebert, F. Miomandre, Polypyrrole-modified graphene sheet nanocomposites as new efficient materials for supercapacitors. Carbon 105, 510–520 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Manoj, K.M. Anilkumar, B. Jinisha, Jayalekshmi, Polyaniline-graphene oxide based ordered nanocomposite electrodes for high-performance supercapacitor application. J. Mater. Sci. 28, 14323–14330 (2017)Google Scholar
  14. 14.
    R. Dhilip Kumar, Y. Andou, Karuppuchamy, Facile synthesis of Co–WO3/functionalized carbon nanotube nanocomposites for supercapacitor applications. J. Mater. Sci. 28, 5425–5434 (2017)Google Scholar
  15. 15.
    X. Zhang, X.Z. Zeng, M. Yang, Y.X. Qi, Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl. Mat. Interfaces 6, 1125–1130 (2014)CrossRefGoogle Scholar
  16. 16.
    T.M. Wu, S.H. Lin, Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites. J. Polym. Sci. A 44, 6449–6457 (2006)CrossRefGoogle Scholar
  17. 17.
    J. Zhang, L.B. Kong, J.J. Cai, Y.C. Luo, L. Kang, Nano-composite of polypyrrole/modified mesoporous carbon for electrochemical capacitor application. Eletrochim Acta 55, 8067–8073 (2010)CrossRefGoogle Scholar
  18. 18.
    X.F. Xia, Q.L. Hao, W. Lei, W.J. Wang, H.L. Wang, X. Wang, Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: synthesis and properties. J. Mater. Chem. 22, 8314–8320 (2012)CrossRefGoogle Scholar
  19. 19.
    A.K. Das, S.K. Karan, B.B. Khatua, High energy density ternary composite electrode material based on polyaniline (PANI), molybdenum trioxide (MoO3) and graphene nanoplatelets (GNP) prepared by sono-chemical method and their synergistic contributions in superior supercapacitive performance. Electrochim. Acta 180, 1–15 (2015)CrossRefGoogle Scholar
  20. 20.
    W.Q. Zheng, S.B. Li, X.H. Yu, C.L. Chen, H.B. Huang, Y.N. Huang, L. Li, Synthesis of hierarchical reduced graphene oxide–SnO2–polypyrrole ternary composites with high electrochemical performance. Mat. Res. Bull. 80, 303–308 (2016)CrossRefGoogle Scholar
  21. 21.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, D.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–877 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Davies, P. Audette, B. Farrow, F. Hassan, Z.W. Chen, J.Y. Choi, A.P. Yu, Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J. Phys. Chem. C 115, 17612–17620 (2011)CrossRefGoogle Scholar
  23. 23.
    Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, H.L. Li, Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 307, 391–400 (2016)CrossRefGoogle Scholar
  24. 24.
    X.J. Lu, F. Zhang, H. Dou, C.Z. Yuan, S.D. Yang, L. Hao, L.F. Shen, L.J. Zhang, X.G. Zhang, Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites. Electrochim. Acta 69, 160–166 (2012)CrossRefGoogle Scholar
  25. 25.
    P. Thi Thuy Phuong, N. Phuc Hoang Duy, V. Tan Tai, N. Huu Huy Phuc, L. Cam Loc, Facile method for synthesis of nanosized β-MoO3 and their catalytic behavior for selective oxidation of methanol to formaldehyde. Adv. Nat. Sci. 6, 045010 (2015)Google Scholar
  26. 26.
    H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. 11, 1158–1161 (2009)CrossRefGoogle Scholar
  27. 27.
    R. Bissessur, K.Y. Peter Liu, S.F. Scully, Intercalation of polypyrrole into graphite oxide. Synth. Met. 156, 1023–1027 (2006)CrossRefGoogle Scholar
  28. 28.
    M.F. Hassan, Z.P. Guo, Z. Chen, H.K. Liu, Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J. Power Sources 195, 2372–2376 (2010)CrossRefGoogle Scholar
  29. 29.
    F.H. Hsu, T.M. Wu, Poypyrrole/molybdenum trioxide/graphene nanoribbon ternary nanocomposite with enhanced capacitive performance as an electrode for supercapacitor. J. Solid State Electrochem. 20, 691–698 (2016)CrossRefGoogle Scholar
  30. 30.
    P. Si, S.J. Ding, X.W. Lou, D.H. Kim, An electrochemically formed three-dimensional structure of polypyrrole/graphene nanoplatelets for high-performance supercapacitors. RSC Adv. 1, 1271–1278 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557–3561 (2008)CrossRefGoogle Scholar
  32. 32.
    W.J. Wang, Q.L. Hao, W. Lei, X.F. Xia, X. Wang, Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Adv. 2, 10268–10274 (2012)CrossRefGoogle Scholar
  33. 33.
    J.H. Liu, J.W. An, Y.X. Ma, M.L. Li, R.B. Ma, Synthesis of a graphene-polypyrrole nanotube composite and its application in supercapacitor electrode batteries and energy storage. J. Electrochem. Soc. 159, A828–A833 (2012)CrossRefGoogle Scholar
  34. 34.
    L. Li, H. Song, Q. Zhang, J. Yao, X. Chen, Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. J. Power Sources 187, 268–274 (2009)CrossRefGoogle Scholar
  35. 35.
    Y. Liu, B.H. Zhang, Y.Q. Yang, Z. Chang, Z.B. Wen, Y.P. Wu, Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. J. Mater. Chem. A 1, 13582–13587 (2013)CrossRefGoogle Scholar
  36. 36.
    S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, C.K. Das, Graphene-polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor. Polymer 54, 1033–1042 (2013)CrossRefGoogle Scholar
  37. 37.
    X. Wang, C. Yang, H.D. Li, P. Liu, Synthesis and electrochemical performance of well-defined flake-shaped sulfonated graphene/polypyrrole composites via facile in situ doping polymerization. Electrochim. Acta 111, 729–737 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Wang, Y. Li, J. Ge, B.P. Zhang, W. Wan, Improving photocatalytic performance of ZnO via synergistic effects of Ag nanoparticles and graphene quantum dots. Phys. Chem. Chem. Phys. 17, 18645–18652 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations