Skip to main content
Log in

Photocatalytic and antibacterial studies of indium-doped ZnO nanoparticles synthesized by co-precipitation technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indium (0.01, 0.04 and 0.06 mol%) doped ZnO nanoparticles (IZ-NPs) have been synthesized using the facile co-precipitation method. The prepared nanoparticles (NPs) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Elemental dispersive spectroscopy (EDS), UV–Vis absorption spectrum (UV–Vis) and photoluminescence (PL) techniques. The photocatalytic activities were evaluated for the degradation of Rhodamine-B (Rh-B) under UV–Vis irradiation. The antibacterial properties of Zinc oxide nanoparticles (NPs) were investigated using human pathogens and were compared based on the diameter of inhibition zone using Agar-well diffusion method. Structural studies confirm the main presence of hexagonal wurtzite ZnO phase and well-crystalline. The incorporation of indium ions was responsible for the change in their various lattice parameters. The average crystallite sizes were decreased by increasing the indium dopant concentration. SEM images reveal the synthesized NPs are in nanometer range with various shape and improved crystallinity is noted for higher doping (In) concentration. The presence of indium in the host lattice was confirmed by EDS spectroscopy. Optical studies shows that the band-gap energy decreases (3.34–3.17) with an increase in doping concentration (2–6%). The photoluminescence (PL) spectrum reveals the UV emission is strong near the band-edge region (NBE) (392 nm) and intrinsic defects encountered in series of visible emission peaks around 400–560 nm. From the efficiency of the photocatalytic activity, higher dopant concentration (6%) showed higher photocatalytic activity than the other NPs in destroying Rhodamine B (RhB) under UV–Vis light irradiation. The synthesized In-doped Zinc oxide nanostructures show maximum antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.K. Sharma, M. Kumar, A.C. Pandey, Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs. J. Nanocryst. Res. 13, 1629–1637 (2010)

    Google Scholar 

  2. Y. Zhang, M.K. Ram, E.K. Stefanakos, D. Yogi Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 1–22, (2012)

    Google Scholar 

  3. S.B. Rana, P. Singh, A.K. Sharma, A.W. Carbonari, R. Dogra, Synthesis and characterization of pure and doped ZnO nanoparticles. J. Optoelectron. Adv. Mater. 12, 257–261 (2010)

    CAS  Google Scholar 

  4. N. El-Atab, A. Nayfeh, Ultra-small ZnO nanoparticles for charge storage in MOS-memory devices. ECS Trans. 72, 73–79, (2016)

    CAS  Google Scholar 

  5. M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3, 2643–2667 (2010)

    CAS  Google Scholar 

  6. P.K. Sharma, M. Kumar, A.C. Pandey, Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs. J. Nanopart. Res. 13, 1629–1637 (2011)

    CAS  Google Scholar 

  7. L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids: a potential antibacterial agent. Prog. Nat. Sci. 18, 939–944 (2008)

    CAS  Google Scholar 

  8. H.S. Hassan, A.B. Kashyout, I. Morsi, A.A.A. Nasser, I. Ali, Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO:In nano materials. J. Basic Appl. Sci. 3, 216–221 (2014)

    Google Scholar 

  9. C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photo degradation. Chem. Commun. (Camb) 48, 2858–2860 (2012)

    CAS  Google Scholar 

  10. S. Kuriakose, V. Choudhary, B. Satpati, S. Mohapatra, Structural, optical, and magnetic properties of Ni. Beilstein J. Nanotechnol. 5, 639–650 (2014)

    CAS  Google Scholar 

  11. P. Rathore, A.K. Chittora, R. Ameta, S. Sharma, Enhancement of photocatalytic activity of zinc oxide by doping with nitrogen. Sci. Revs. Chem. Commun. 5, 113–124 (2015)

    CAS  Google Scholar 

  12. A.H. Abdullah, L.K. Mun, Z. Zainal, M.Z. Hussein, Photodegradation of chlorophenoxyacetic acids by ZnO/γ–Fe2O3 nanocatalysts: a comparative study. Int. J. Chem. 5, 56–65 (2013)

    Google Scholar 

  13. S. Baruah, M.A. Mahmood, M.T.Z. Myint, T. Bora, J. Dutta, Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J. Nanotechnol. 1, 14–20 (2010)

    CAS  Google Scholar 

  14. M.T. Uddin, Y. Nicolas, C. Olivier, L. Servant, T. Toupance, S. Li, A. Klein, W. Jaegermann, Improved photocatalytic activity in RuO2–ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects. Phys. Chem. Chem. Phys. 17, 5090–5102 (2015)

    CAS  Google Scholar 

  15. R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater. Sci. Semicond. Process. 32, 152–159 (2015)

    CAS  Google Scholar 

  16. Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles. Nanoscale Res. Lett. 7(100), 1–9 (2012)

    Google Scholar 

  17. S. Girish Kumar, K.S.R. Koteswara Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015)

    Google Scholar 

  18. S. Baruah, S.K. Pal, J. Dutta, Nanostructured zinc oxide for water treatment. Nanosci. Nanotechnol. 2, 90–102 (2012)

    CAS  Google Scholar 

  19. S. Kuriakose, B. Satpati, S. Mohapatra, Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys. Chem. Chem. Phys. 16, 12741–12749 (2014)

    CAS  Google Scholar 

  20. H. Yamada, K. Suzuki, S. Koizumi, Gene expression profile in human cells exposed to zinc. J. Toxicol. Sci. 32, 193–196 (2007)

    CAS  Google Scholar 

  21. Y. Fan, R. Liu, W. Du, Q. Lu, H. Pang, F. Gao, Synthesis of copper(II) Co-ordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ions better performances. J. Mater. Chem. 22, 12609–12617 (2012)

    CAS  Google Scholar 

  22. U. Ozgur, H. Morkoc, Zinc Oxide: Fundamentals, Materials and Device Technology. (Wiley, New York, 2009), p. 365

    Google Scholar 

  23. H.R. Ghaffarian, M. Saiedi, M.A. Sayyadnejad, Synthesis of ZnO nanoparticles by spray pyrolysis method, Iran. J. Chem. Chem. Eng 30, 1–6 (2011)

    CAS  Google Scholar 

  24. C.-C. Lin, Y.-Y. Li, Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Mater. Chem. Phys. 113, 334–337 (2015)

    Google Scholar 

  25. E. Maryanti, D. Damayanti, I. Gustian, S. Salprima Yudha, Synthesis of ZnO nanoparticles by hydrothermal method in aqueous rinds extracts of Sapindus rarak DC. Mater. Lett. 118, 96–98 (2014)

    CAS  Google Scholar 

  26. R.M. Alwan, Q.A. Kadhim, K.M. Sahan, R.A. Ali, R.J. Mahdi, N.A. Kassim, A.N. Jassim, Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Appl. Surf. Sci. 5, 1–6 (2015)

    CAS  Google Scholar 

  27. Arun Vasudevan, Soyoun Jung, Taeksoo Ji, Synthesis and characterization of hydrolysis grown zinc oxide nanorods. ISRN Nanotechnol 2017, 1–7 (2011). doi:10.5402/2011/983181

    Article  CAS  Google Scholar 

  28. J. Lang, J. Wang, Q. Zhang, X. Li, Q. Han, M. Wei, Y. Sui, D. Wang, J. Yang, Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles. Ceram. Int. 42, 14175–14181 (2016)

    CAS  Google Scholar 

  29. V. Anand, V.C. Srivastav, Zinc oxide nanoparticles synthesis by electrochemical method: optimization of parameters for maximization of productivity and characterization. J. Alloys Compd. 636, 288–292 (2015)

    CAS  Google Scholar 

  30. A. Bagabas, A. Alshammari, M.F.A. Aboud, H. Kosslick, Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res. Lett. 8(516), 1–10 (2013)

    Google Scholar 

  31. K. Pradeev raj, K. Sadaiyandi, A. Kennedy, R. Thamizselvi, Structural, optical, photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles. Mater. Chem. Phys. (2016). doi:10.1016/j.matchemphys.2016.07.068

    Article  Google Scholar 

  32. Z. Chen, S. Li, Y. Tian, S. Wu, W. Zhang, Sythesis of magnesium oxide doped ZnO nanostructures using electrochemical deposition. Int. J. Electrochem. Sci. 7, 10620–10626 (2012)

    CAS  Google Scholar 

  33. M. Schwartz, Smart Materials. (CRC Press, Boca Raton, 2008), pp. 1–3

    Google Scholar 

  34. S. Talam, S. Rao Karumuri, N. Gunnam, Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol. 2012, 1–6 (2012)

    Google Scholar 

  35. P. Geetha Devi, A. Sakthi Velu, Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. J. Theor. Appl. Phys. (2016). doi:10.1007/s40094-016-0221-0

    Article  Google Scholar 

  36. A. Singh, H.L. Vishwakarma, Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation. Mater. Sci. Poland 33, 751–759 (2015)

    CAS  Google Scholar 

  37. T.A. Abdel-Baset, Y.-W. Fang, B. Anis, C.-G. Duan, M. Abdel-Hafiez, Structural and magnetic properties of transition-metal-doped Zn1 – xFexO. Nanoscale Res. Lett., 11(115), 1–12 (2016)

    CAS  Google Scholar 

  38. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014)

    Google Scholar 

  39. G. Pavithra, M. Bououdina, S. Dhanapandian, P. Dhamodharan, C. Manoharan, Characterization and study of antibacterial activity of spray pyrolysed ZnO:Al thin films. Appl Nanosci. 6, 815–825 (2016)

    Google Scholar 

  40. A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamsone Hall and size strain plot methods. Solid State Sci. 13, 251–256

  41. S. Kumari, P. Kumar, M. Kar, L. Kumar, V. Kumar, Structural analysis by rietveld method and its correlation with optical propertis of nanocrystalline zinc oxide. Adv. Mater. Lett. 6, 139–147

  42. V. Sesha Sai Kumar, K. Venkateswara Rao, X-ray peak broadening analysis and optical studies of ZnO nanoparticles derived by surfactant assisted combustion synthesis. J. Nano Electron. Phys. 5, 02026–02026 (2013)

    Google Scholar 

  43. S. Mohan, K.S. Thind, G. Sharma, Effect of Nd3+ concentration on the physical and absorption properties of sodium-lead-borate glasses. Braz. J. Phys. 37, 1306–1313 (2007)

    CAS  Google Scholar 

  44. K. N’Konou, M. Haris, Y. Lare, M. Baneto, K. Napo, Effect of barium doping on the physical properties of zinc oxide nanoparticles elaborated via sonochemical synthesis method. Pramana 87, 1–7 (2016)

    Google Scholar 

  45. D.K. Sharma, K.K. Sharma, V. Kumar, A. Sharma, Effect of Ce doping on the structural, optical and magnetic properties of ZnO nanoparticles. J. Mater. Sci. (2016). doi:10.1007/s10854-016-5117-x

    Article  Google Scholar 

  46. P. Kaur, S. Kumar, N.S. Negi, S.M. Rao, Enhanced magnetism in Cr-doped ZnO nanoparticles with nitrogen co-doping synthesized using sol–gel technique. Appl. Nanosci. 5, 367–372 (2015)

    CAS  Google Scholar 

  47. B.H. Soni, M.P. Deshpande, S.V. Bhatt, N. Garg, N.N. Pandya, S.H. Chaki, Influence of Mn doping on optical properties of ZnO nanoparticles synthesized by microwave irradiation. J. Opt. 42, 328–334 (2013)

    Google Scholar 

  48. V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4, 2717–2725 (2012)

    CAS  Google Scholar 

  49. C.H. Venkata Reddy, B. Babu, S.V. Prabhakar Vattikuti, R.V.S.S.N. Ravikumar, J. Shim, Structural and optical properties of vanadium doped SnO2 Nanoparticles with high photocatalytic activities. J. Lumin. 179, 26–34 (2016)

    Google Scholar 

  50. R. Elilarassi, G. Chandrasekaran, Influence of Co-doping on the structural, optical and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method. J. Mater. Sci. 24, 96–105 (2012)

    Google Scholar 

  51. V. Ganasan, C. Sudarsanakumar, V.P. Radhakrishna Prabhu, R. Mahadevan, Sreeja Sreedharan, Highly transparent and luminescent nanostructured Eu2O3. In 2nd international conference on structural nano composites (NANOSTRUC 2014), Madrid, Spain, pp. 1–6 (2014)

  52. D. Sarkar, P.K. Giri Bappaditya Pal, Structural, optical, and magnetic properties of Ni. Appl. Surf. Sci. 356, 804–811 (2015)

    Google Scholar 

  53. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261, 3–18 (2010)

    CAS  Google Scholar 

  54. P. HemalathaS. N. Karthick, K.V. Hemalatha, M. Yi, H.-J. Kim, M. Alagar, La-doped ZnO nanoflower as photocatalyst for methylene blue dye degradation under UV irradiation. J. Mater. Sci. 27, 2367–2378 (2015)

    Google Scholar 

  55. Z. Barzgari, A. Ghazizadeh, S.Z. Askari, Preparation of Mn-doped ZnO nanostructured for photocatalytic degradation of orange G under solar light. Res. Chem. Intermed. 42, 84303–84315 (2015)

    Google Scholar 

  56. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in watertreatment technology: a review. Water Res. 88, 428–448 (2016)

    CAS  Google Scholar 

  57. J. Zhong, J. Li, X.Y. He, J. Zeng, Y. Lu, W. Hu, K. Lin, Improved photocatalytic performance of Pd-doped ZnO. Curr. Appl. Phys. 12, 998–1001 (2012)

    Google Scholar 

  58. T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand, A. Varma, A Comparative study of pure and copper (CU) doped ZnO nanorods for antibacterial AND photocatalytic applications with their mechanism of action. J. Nanopart. Res. 17, 1–11 (2015)

    CAS  Google Scholar 

  59. I.Y.-Y. Bu, Enhanced photocatalytic activity of sol–gel derived ZnO via the co-doping process. Superlattices Microstruct. 86, 36–42 (2015)

    CAS  Google Scholar 

  60. H. Zhang, D.R. Yang, Y.J. Ji, X.Y. Ma, J. Xu, D.L. Que, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltri methyl ammonium bromide-assisted hydrothermal process. J. Phys. Chem. B. 108, 3955–3958 (2004)

    CAS  Google Scholar 

  61. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006)

    CAS  Google Scholar 

  62. L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9, 479–489 (2007)

    Google Scholar 

  63. S. Sonia, N.D. Jayram, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Effect of NaOH concentration on structural, surface and antibacterial activity of CuO nanorods synthesized by direct sonochemical method. Superlattices Microstruct. 66, 1–9 (2014)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Sagadevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeev Raj, K., Sadaiyandi, K., Kennedy, A. et al. Photocatalytic and antibacterial studies of indium-doped ZnO nanoparticles synthesized by co-precipitation technique. J Mater Sci: Mater Electron 28, 19025–19037 (2017). https://doi.org/10.1007/s10854-017-7857-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7857-7

Navigation