Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 24, pp 19017–19024 | Cite as

Size and strain dependent anatase to rutile phase transition in TiO2 due to Si incorporation

  • Anita
  • Arun Kumar Yadav
  • Nasima Khatun
  • Sunil Kumar
  • Chuan-Ming Tseng
  • Sajal Biring
  • Somaditya Sen
Article
  • 105 Downloads

Abstract

Powders with compositions Ti(1x)SixO2 (where 0 ≤ x ≤ 0.25) were prepared to systematically study the effects of Si doping on anatase to rutile phase transformation. Samples were synthesized using a modified sol–gel route and were heat treated at various temperature in 450–950 °C range. XRD, Raman Spectroscopy, UV–vis spectroscopy, SEM, TEM were used to study the effects of dopant concentration and heat-treatments on the crystal structure, crystallite size and particle size. Rutile phase was found to occur only above a critical crystallite size. Si doping was found to delay the onset of anatase to rutile phase transformation from 500 °C (for composition x = 0) to 800 °C (for x = 0.25) through the lattice strain and crystallize size modification. Interplay between the average crystallite sizes, lattice strain, annealing temperature, and their effect on phase transition are discussed in terms of Si incorporation in lattice.

References

  1. 1.
    B.J. Morgan, G.W. Watson, J. Phys. Chem. C 114, 2321 (2010). doi:10.1021/jp9088047 CrossRefGoogle Scholar
  2. 2.
    X. Hong, Z. Wang, W. Cai et al., Chem. Mater. 17, 1548 (2005). doi:10.1021/cm047891k CrossRefGoogle Scholar
  3. 3.
    Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134, 6575 (2012). doi:10.1021/ja302846n CrossRefGoogle Scholar
  4. 4.
    A. Sousa-Castillo, M. Comesaña-Hermo, B. Rodríguez-González et al., J. Phys. Chem. C 120, 11690 (2016). doi:10.1021/acs.jpcc.6b02370 CrossRefGoogle Scholar
  5. 5.
    J. Nisar, Z. Topalian, A. De Sarkar, L. Österlund, R. Ahuja, ACS Appl. Mater. Interfaces 5, 8516 (2013). doi:10.1021/am4018835 CrossRefGoogle Scholar
  6. 6.
    D.P. Macwan, P.N. Dave, S. Chaturvedi, J. Mater. Sci. 46, 3669 (2011). doi:10.1007/s10853-011-5378-y CrossRefGoogle Scholar
  7. 7.
    I. Chung, B. Lee, J. He, R.P.H Chang, M.G. Kanatzidis, Nature 485, 486 (2012). doi:10.1038/nature11067 CrossRefGoogle Scholar
  8. 8.
    F. Giordano, A. Abate, J.P. Correa Baena et al., Nat. Commun. 7, 10379 (2016). doi:10.1038/ncomms10379 CrossRefGoogle Scholar
  9. 9.
    N. Liu, C. Schneider, D. Freitag et al., Nano Lett. 14, 3309 (2014). doi:10.1021/nl500710j CrossRefGoogle Scholar
  10. 10.
    X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010). doi:10.1021/cr1001645 CrossRefGoogle Scholar
  11. 11.
    A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz Environ. Sci. Technol. 46, 2242 (2012). doi:10.1021/es204168d CrossRefGoogle Scholar
  12. 12.
    G. Bachler, N. von Goetz, K. Hungerbuhler, Nanotoxicology 9, 373 (2015). doi:10.3109/17435390.2014.940404 CrossRefGoogle Scholar
  13. 13.
    M. Montazer, E. Pakdel, M.B. Moghadam, (2010) Fibers Polym. 11, 967. doi:10.1007/s12221-010-0967-y CrossRefGoogle Scholar
  14. 14.
    G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Recent Pat. Corros. Sci. 2, 40 (2010). doi:10.2174/1877610801002010040 CrossRefGoogle Scholar
  15. 15.
    R. Fateh, A.A. Ismail, R. Dillert, D.W. Bahnemann, J. Phys. Chem. C 115, 10405 (2011). doi:10.1021/jp200892z CrossRefGoogle Scholar
  16. 16.
    B. Liu, X. Zhao, Phys. Chem. Chem. Phys. 16, 22343 (2014). doi:10.1039/C4CP02243B CrossRefGoogle Scholar
  17. 17.
    C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, C. Thanachayanont, Ceram. Int. 34, 1067 (2008). doi:10.1016/j.ceramint.2007.09.043 CrossRefGoogle Scholar
  18. 18.
    Y. Lai, Y. Tang, J. Gong et al., J. Mater. Chem. 22, 7420 (2012). doi:10.1039/C2JM16298A CrossRefGoogle Scholar
  19. 19.
    K.M. Kummer, E.N. Taylor, N.G. Durmas, K.M. Tarquinio, B. Ercan, T.J. Webster, J. Biomed. Mater. Res. B 101, 677 (2013). doi:10.1002/jbm.b.32870 CrossRefGoogle Scholar
  20. 20.
    T. Tatsuma, W. Kubo, A. Fujishima, Langmuir 18, 9632 (2002). doi:10.1021/la026246u CrossRefGoogle Scholar
  21. 21.
    V.M. Daskalaki, M. Antoniadou, G. Li Puma, D.I. Kondarides, P. Lianos, Environ. Sci. Technol. 44, 7200 (2010). doi:10.1021/es9038962 CrossRefGoogle Scholar
  22. 22.
    R. Fagan, D.E. McCormack, S. Hinder, S.C. Pillai, Mater. Des. 96, 44 (2016). doi:10.1016/j.matdes.2016.01.142 CrossRefGoogle Scholar
  23. 23.
    P. Periyat, D.E. McCormack, S.J. Hinder, S.C. Pillai, J. Phys. Chem. C 113, 3246 (2009)CrossRefGoogle Scholar
  24. 24.
    D. Dambournet, I. Belharouak, K. Amine, Chem. Mater. 22, 1173 (2010). doi:10.1021/cm902613h CrossRefGoogle Scholar
  25. 25.
    S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011). doi:10.1007/s11434-011-4476-1 CrossRefGoogle Scholar
  26. 26.
    DAH Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011). doi:10.1007/s10853-010-5113-0 CrossRefGoogle Scholar
  27. 27.
    D.C. Cronemeyer, Phys. Rev. 87, 876 (1952)CrossRefGoogle Scholar
  28. 28.
    MSP Francisco, V.R. Mastelaro, Chem. Mater. 14, 2514 (2002). doi:10.1021/cm011520b CrossRefGoogle Scholar
  29. 29.
    R.A. Spurr Anal. Chem. 29, 760 (1957)CrossRefGoogle Scholar
  30. 30.
    C. He, B. Tian, J. Zhang, J. Colloid Interface Sci. 344, 382 (2010). doi:10.1016/j.jcis.2010.01.002 CrossRefGoogle Scholar
  31. 31.
    A.A. Murashkina, P.D. Murzin, A.V. Rudakova, V.K. Ryabchuk, A.V. Emeline, D.W. Bahnemann, J. Phys. Chem. C 119, 24695 (2015). doi:10.1021/acs.jpcc.5b06252 CrossRefGoogle Scholar
  32. 32.
    B. Venugopal, B. Nandan, A. Ayyachamy et al., RSC Adv. 4, 6141 (2014). doi:10.1039/C3RA46378H CrossRefGoogle Scholar
  33. 33.
    N. Khatun, E.G. Rini, P. Shirage, P. Rajput, S.N. Jha, S. Sen, Mater. Sci. Semicond. Process. 50, 7 (2016). doi:10.1016/j.mssp.2016.04.002 CrossRefGoogle Scholar
  34. 34.
    R. Palomino-Merino, P. Trejo-Garcia, O. Portillo-Moreno et al., Opt. Mater. 46, 345 (2015). doi:10.1016/j.optmat.2015.04.042 CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, C.X. Harris, P. Wallenmeyer, J. Murowchick, X. Chen, J. Phys. Chem. C 117, 24015 (2013). doi:10.1021/jp406948e CrossRefGoogle Scholar
  36. 36.
    J. Zhang, P. Zhou, J. Liu, J. Yu, Phys. Chem. Chem. Phys. 16, 20382 (2014). doi:10.1039/C4CP02201G CrossRefGoogle Scholar
  37. 37.
    D.S. Dhawale, A.M. More, S.S. Latthe, K.Y. Rajpure, C.D. Lokhande, Appl. Sci. Res. 254, 3269 (2008). doi:10.1016/j.apsusc.2007.11.013 Google Scholar
  38. 38.
    I. Ben Jemaa, F. Chaabouni, L. Presmanes et al., J. Mater. Sci. 27, 13242 (2016). doi:10.1007/s10854-016-5471-8 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Anita
    • 1
  • Arun Kumar Yadav
    • 1
  • Nasima Khatun
    • 2
  • Sunil Kumar
    • 1
  • Chuan-Ming Tseng
    • 3
  • Sajal Biring
    • 4
  • Somaditya Sen
    • 1
    • 2
  1. 1.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of TechnologyIndoreIndia
  2. 2.Discipline of PhysicsIndian Institute of TechnologyIndoreIndia
  3. 3.Materials EngineeringMing-Chi University of TechnologyNew Taipei CityTaiwan, ROC
  4. 4.Electronic EngineeringMing Chi University of TechnologyNew Taipei CityTaiwan, ROC

Personalised recommendations