Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 24, pp 19010–19016 | Cite as

Transparent nano layered Li3PO4 coatings on bare and ITO coated glass by thermionic vacuum arc method

  • Suat PatEmail author
  • H. Hakan Yudar
  • Şadan Korkmaz
  • Soner Özen
  • Reza Mohammadigharehbagh
  • Zerrin Pat
Article

Abstract

In this paper, Li3PO4 (LPO) thin films were coated onto bare and indium tin oxide (ITO) coated glass substrates by thermionic vacuum arc technique. The structural, surface, and optical properties of the LPO films were investigated. The properties of the deposited films were analyzed using an X-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, UV–Vis spectrophotometer, and interferometer tools. The miller indices of the crystalline planes of the ITO coated samples were determined as to be (222), (123), (400), (420), (440), (622), and (444). The (200), (121), (112), (301), and (410) miller indices for the crystalline planes were detected for the LPO layers deposited directly on glass. The grain sizes, the microstrain, the lattice strain values, the dislocation density and the number of crystallite per unit area were estimated for LPO layer. The transparency values of the produced Li3PO4/glass (sample S1) and Li3PO4/ITO/glass (sample S2) structures were relatively high 87 and 90% for bare and ITO coated glass substrate, respectively. The reflection values of the coated samples onto bare and ITO coated glass were approximately as 0.05 and 0.06 at 550 nm, respectively.

Notes

Acknowledgements

This research activity was supported by TUBITAK (Grant No. 115E331).

References

  1. 1.
    H. Li, Z. Wang, L. Chen, X. Huang, Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009)CrossRefGoogle Scholar
  2. 2.
    J. Clement, Investigation of thin film materials for next generation lithium ion batteries (2016)Google Scholar
  3. 3.
    N. Kuwata, S. Kudo, Y. Matsuda, J. Kawamura, Fabrication of thin-film lithium batteries with 5-V-class LiCoMnO4 cathodes. Solid State Ion. 262, 165–169 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Xiong, K. Xie, E. Blomberg, P. Jacobsson, A. Matic, Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. J. Power Sources 252, 150–155 (2014)CrossRefGoogle Scholar
  5. 5.
    S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. (2015). doi: 10.1002/aenm.201401408 Google Scholar
  7. 7.
    P. Sivakumar, P.K. Nayak, B. Markovsky, D. Aurbach, A. Gedanken, Sonochemical synthesis of LiNi0.5Mn1.5O4 and its electrochemical performance as a cathode material for 5V Li-ion batteries. Ultrason Sonochem 26, 332–339 (2015)CrossRefGoogle Scholar
  8. 8.
    T. Hwang, J. Lee, H. Noh, J. Lee, J. Mun, J.-K. Lee, W. Choi, Surface coating of 5V spinel LiNi0.5Mn1.5O4 cathodes by carbon materials for Li-ion batteries applications, in Meeting Abstracts, The Electrochemical Society, 2015, pp. 553–553Google Scholar
  9. 9.
    C.-F. Sun, J. Hu, P. Wang, X.-Y. Cheng, S.B. Lee, Y. Wang, Li3PO4 matrix enables a long cycle life and high energy efficiency bismuth-based battery. Nano Lett. 16, 5875–5882 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Liu, B-doped Li3V2 (PO4)3/C cathode material with high rate capability for lithium-ion batteries. Ceram. Int. 43, 2573–2578 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Luo, X. Lin, H. Lan, H. Yu, L. Yan, S. Qian, N. Long, M. Shui, J. Shu, Lithiation-delithiation kinetics of BaLi2Ti6O14 anode in high-performance secondary Li-ion batteries. J. Electroanal. Chem. 786, 86–93 (2017)CrossRefGoogle Scholar
  12. 12.
    D. Mu, Y. Chen, B. Wu, R. Huang, Y. Jiang, L. Li, F. Wu, Nano-sized Li4Ti5O12/C anode material with ultrafast charge/discharge capability for lithium ion batteries. J. Alloys Compd. 671, 157–163 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Zhou, Y.B. He, R. Liu, M. Liu, H. Du, B. Li, Q. Cai, Q.H. Yang, F. Kang, In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv. Energy Mater. (2015). doi: 10.1002/aenm.201500353 Google Scholar
  14. 14.
    P. Hou, L. Zhang, X. Gao, A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries. J. Mater. Chem. A 2, 17130–17138 (2014)CrossRefGoogle Scholar
  15. 15.
    G. Tan, F. Wu, C. Zhan, J. Wang, D. Mu, J. Lu, K. Amine, Solid-state li-ion batteries using fast, stable, glassy nanocomposite electrolytes for good safety and long cycle-life. Nano Lett. 16, 1960–1968 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Feng, B. Yan, M.O. Lai, L. Li, Design and fabrication of an all-solid-state thin-film Li-Ion microbattery with amorphous TiO2 as the anode. Energy Technol. 2, 397–400 (2014)CrossRefGoogle Scholar
  17. 17.
    H.-K. Lee, N.-J. Choi, S.E. Moon, W.S. Yang, J. Kim, A solid electrolyte potentiometric CO2 gas sensor composed of lithium phosphate as both the reference and the solid electrolyte materials. J. Korean Phys. Soc. 61, 938–941 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Borhani-Haghighi, C. Khare, R. Trócoli, A. Dushina, M. Kieschnick, F. LaMantia, A. Ludwig, Synthesis of nanostructured LiMn2O4 thin films by glancing angle deposition for Li-ion battery applications. Nanotechnology 27, 455402 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Laurenti, N. Garino, S. Porro, M. Fontana, C. Gerbaldi, Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries. J. Alloys Compd. 640, 321–326 (2015)CrossRefGoogle Scholar
  20. 20.
    I.J. Gordon, S. Grugeon, H. Takenouti, B. Tribollet, M. Armand, C. Davoisne, A. Débart, S. Laruelle, Electrochemical Impedance Spectroscopy response study of a commercial graphite-based negative electrode for Li-ion batteries as function of the cell state of charge and ageing. Electrochim. Acta 223, 63–73 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Wang, Z. Liu, D. Chen, Z. Jiang, A new potentiometric SO2 sensor based on Li3PO4 electrolyte film and its response characteristics. Rev. Sci. Instrum. 86, 075007 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Pat, S. Özen, V. Şenay, Ş. Korkmaz, Optical and surface properties of optically transparent Li3PO4 solid electrolyte layer for transparent solid batteries. Scanning. (2015). doi: 10.1002/sca.21272 Google Scholar
  23. 23.
    S. Zhang, S. Xie, C. Chen, Fabrication and electrical properties of Li3PO4-based composite electrolyte films. Mater. Sci. Eng. B 121, 160–165 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Kobayashi, S. Seki, A. Yamanaka, H. Miyashiro, Y. Mita, T. Iwahori, Development of high-voltage and high-capacity all-solid-state lithium secondary batteries. J. Power Sources 146, 719–722 (2005)CrossRefGoogle Scholar
  25. 25.
    E. Kartini, T.Y.S. Putra, Supardi, W. Honggowranto, T. Umbar, M. Manawan, Neutron study on Li3PO4 solid electrolyte prepared by wet chemical reaction. in Asian oceania conference on neutron scattering (AOCNS), Sydney, Australia (2015)Google Scholar
  26. 26.
    Y. Sakurai, A. Sakuda, A. Hayashi, M. Tatsumisago, Coating of Li4SiO4-Li3PO4 solid electrolyte films on LiCoO2 particles by pulsed laser deposition, in Meeting Abstracts, The Electrochemical Society, 2010, pp. 596–596Google Scholar
  27. 27.
    Y. Kobayashi, H. Miyashiro, K. Takei, H. Shigemura, M. Tabuchi, H. Kageyama, T. Iwahori, 5 V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4. J. Electrochem. Soc. 150, A1577–A1582 (2003)Google Scholar
  28. 28.
    X. Li, R. Yang, B. Cheng, Q. Hao, H. Xu, J. Yang, Y. Qian, Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55 C. Mater. Lett. 66, 168–171 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Chong, S. Xun, J. Zhang, X. Song, H. Xie, V. Battaglia, R. Wang, Li3PO4-coated LiNi0.5Mn1.5O4: a stable high-voltage cathode material for lithium-ion batteries, Chem.-A Eur. J. 20, 7479–7485 (2014)CrossRefGoogle Scholar
  30. 30.
    N. Kuwata, N. Iwagami, Y. Tanji, Y. Matsuda, J. Kawamura, Characterization of thin-film lithium batteries with stable thin-film Li3PO4 solid electrolytes fabricated by ArF excimer laser deposition. J. Electrochem. Soc. 157, A521–A527 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Pat, S. Özen, V. Şenay, Ş. Korkmaz, Z. Pat, Solid state battery manufacturing with thermionic vacuum ARC and RF sputtering. in 2015 IEEE International Conference on Plasma Sciences (ICOPS), IEEE, 2015, pp. 1–1Google Scholar
  32. 32.
    S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, AlGaAs film growth using thermionic vacuum arc (TVA) and determination of its physical properties. Eur. Phys. J. Plus 130, 1–6 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, The influence of voltage applied between the electrodes on optical and morphological properties of the InGaN thin films grown by thermionic vacuum arc. Scanning. (2015). doi: 10.1002/sca.21237 Google Scholar
  34. 34.
    C. Keffer, A.D. Mighell, F. Mauer, H.E. Swanson, S. Block, Crystal structure of twinned low-temperature lithium phosphate. Inorg. Chem. 6, 119–125 (1967)CrossRefGoogle Scholar
  35. 35.
    J. Bi, T. Zhang, K. Wang, B. Zhong, G. Luo, Controllable synthesis of Li3PO4 hollow nanospheres for the preparation of high performance LiFePO4 cathode material. Particuology 24, 142–150 (2016)CrossRefGoogle Scholar
  36. 36.
    T.O.L. Sunde, E. Garskaite, B. Otter, H.E. Fossheim, R. Sæterli, R. Holmestad, M.-A. Einarsrud, T. Grande, Transparent and conducting ITO thin films by spin coating of an aqueous precursor solution. J. Mater. Chem. 22, 15740–15749 (2012)CrossRefGoogle Scholar
  37. 37.
    H.H. Yudar, Ş. Korkmaz, S. Özen, V. Şenay, S. Pat, Surface and optical properties of indium tin oxide layer deposition by RF magnetron sputtering in argon atmosphere. Appl. Phys. A 122, 748 (2016)CrossRefGoogle Scholar
  38. 38.
    D. Choi, S.-J. Hong, Y. Son, Characteristics of indium tin oxide (ITO) nanoparticles recovered by lift-off method from TFT-LCD panel scraps. Materials 7, 7662–7669 (2014)CrossRefGoogle Scholar
  39. 39.
    H.H. Yudar, S. Pat, Ş. Korkmaz, S. Özen, V. Şenay, Zn/ZnSe thin films deposition by RF magnetron sputtering. J. Mater. Sci, 28, 1–5 (2016)Google Scholar
  40. 40.
    Ş. Korkmaz, B. Geçici, S.D. Korkmaz, R. Mohammadigharehbagh, S. Pat, S. Özen, V. Şenay, H.H. Yudar, Morphology, composition, structure and optical properties of CuO/Cu2O thin films prepared by RF sputtering method. Vacuum, 131, 142–146 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Sharma, S. Vyas, C. Periasamy, P. Chakrabarti, Structural and optical characterization of ZnO thin films for optoelectronic device applications by RF sputtering technique. Superlattices Microstruct. 75, 378–389 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Suat Pat
    • 1
    Email author
  • H. Hakan Yudar
    • 1
  • Şadan Korkmaz
    • 1
  • Soner Özen
    • 1
  • Reza Mohammadigharehbagh
    • 1
  • Zerrin Pat
    • 2
  1. 1.Physics DepartmentEskişehir Osmangazi UniversityEskişehirTurkey
  2. 2.Chemistry DepartmentBilecik Seyh Edebali UniversityBilecikTurkey

Personalised recommendations