Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 24, pp 18873–18878 | Cite as

Preparation, structure and electrical properties of La1−xBaxCrO3 NTC ceramics

  • Mingxing Chen
  • Huimin ZhangEmail author
  • Ting Liu
  • Hui Jiang
  • Aimin Chang


The La1−xBaxCrO3 (x = 0–0.2) negative temperature coefficient (NTC) ceramics have been prepared by the traditional solid-state reaction method at 1600 °C. Scanning electron microscope images show that the doping of Ba2+ contributes to the increase in the density. X-ray diffraction analysis has revealed that the sintered ceramics crystallize in a single perovskite structure. X-ray photoelectron spectroscopy analysis confirm the existence of Cr3+ and Cr6+ ions on lattice sites, which result in hopping conduction. The presence of the Cr3+ and Cr6+ ions is one of the significant factors that affect the electrical conductivity of La1−xBaxCrO3 ceramics. The resistance of NTC thermistors decreases with the increase of Ba content as a result of the enhancement of Cr6+ Concentration. The obtained values of ρ −50, B −50/−25 and E a are in the range of 49.278–1.9839 × 105 Ω cm, 1767.4–3496.9 K, 0.1523–0.3013 eV, respectively.



This study was supported by the Autonomous Region Youth Science and Technology Innovation Personnel Training Project (No. QN2015JQ010).


  1. 1.
    A. Bonet, M. Baben, N. Travitzky, P. Greil, J. Am. Ceram. Soc. 99, 917 (2016)CrossRefGoogle Scholar
  2. 2.
    H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, J. Electrochem. Soc. 138, 1018 (1991)CrossRefGoogle Scholar
  3. 3.
    J. Sfeir, J. Power Sources 118, 276 (2003)CrossRefGoogle Scholar
  4. 4.
    Y. Ito, K. Wakisaka, H. Kado, S. Yoshikado, Key Eng. Mater. 301, 171 (2006)CrossRefGoogle Scholar
  5. 5.
    Z. Han, J. Liu, X. Li, Y. Chen, G. Liu, J. Li, J. Am. Ceram. Soc. 97, 2705 (2014)CrossRefGoogle Scholar
  6. 6.
    B. Zhang, Q. Zhao, A. Chang, Y. Wu, H. Li, J. Alloys Compd. 675, 381 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Mori, Y. Hiei, N.M. Sammes, Solid State Ionics 135, 743 (2000)CrossRefGoogle Scholar
  8. 8.
    M. Iwasaki, H. Takizawa, K. Uheda, T. Endo, M. Shimada, J. Mater. Chem. 8, 2765 (1998)CrossRefGoogle Scholar
  9. 9.
    S.P. Jiang, L. Liu, K.P. Ong, P. Wu, J. Li, J. Pu, J. Power Sources 176, 82 (2008)CrossRefGoogle Scholar
  10. 10.
    B.K. Flandermeyer, M.M. Nasrallah, A.K. Agarwal, H.U. Anderson, J. Am. Ceram. Soc. 67, 195 (1983)CrossRefGoogle Scholar
  11. 11.
    K. Azegami, M. Yoshinaka, K. Hirota, O. Yamaguchi, Solid State Commun. 112, 281 (1999)CrossRefGoogle Scholar
  12. 12.
    Y. Fu, H. Wang, C. Weng, S. Hu, Y. Liu, J. Am. Ceram. Soc. 98, 2561 (2015)CrossRefGoogle Scholar
  13. 13.
    T. Takeuchi, Y. Takeda, R. Funahashi, T. Aihara, M. Tabuchi, H. Kageyama, J. Electrochem. Soc. 147, 3979 (2000)CrossRefGoogle Scholar
  14. 14.
    H. Qi, Y. Luan, S. Che, L. Zuo, X. Zhao, C. Hou, Inorg. Chem. Commun. 66, 33 (2016)CrossRefGoogle Scholar
  15. 15.
    K. Azegami, M. Yoshinaka, K. Hirota, O. Yamaguchi, J. Electrochem. Soc. 147, 2830 (2000)CrossRefGoogle Scholar
  16. 16.
    L. Groupy, H.U. Anderson, J. Am. Ceram. Soc. 59, 449 (1976)CrossRefGoogle Scholar
  17. 17.
    X. Liu, W. Su, Z. Lu, J. Liu, L. Pei, W. Liu, L. He, J. Alloys Compd. 305, 21 (2000)CrossRefGoogle Scholar
  18. 18.
    H. Berthou, C.K. Jørgensen, C. Bonnelle, Chem. Phys. Lett. 38, 199 (1976)CrossRefGoogle Scholar
  19. 19.
    H. Van Doveren, J.A.T.H. Verhoeven, J. Electron. Spectrosc. Relat. Phenom. 21, 265 (1980)CrossRefGoogle Scholar
  20. 20.
    L. Li, Q. Wei, Z. Kang, M. Rui, W. Su, J. Alloys Compd. 249, 264 (1997)CrossRefGoogle Scholar
  21. 21.
    A.N. Kamlo, J. Bernard, C. Lelievre, D. Houivet, J. Eur. Ceram. Soc. 31, 1457 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Feteira, J. Am. Ceram. Soc. 92, 967 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mingxing Chen
    • 1
    • 2
  • Huimin Zhang
    • 1
    Email author
  • Ting Liu
    • 1
    • 2
  • Hui Jiang
    • 1
  • Aimin Chang
    • 1
  1. 1.Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & Chemistry of CASUrumqiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations