Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 23, pp 18106–18112 | Cite as

Liquid-processed transition metal dichalcogenide films for field-effect transistors

  • A. Yu. Omelianovych
  • D. I. Dominskiy
  • E. V. Feldman
  • A. A. Bessonov
  • K. J. Stevenson
  • D. Yu. Paraschuk


Transition metal dichalcogenides (TMD) offer a great potential for optoelectronic devices. Yet large scale industrial application of unique TMD properties calls for facile processing techniques compatible with solution dispersible materials and printing technologies. In this work, we used wet processing technique to fabricate thin WS2 films and field-effect devices. The films were formed at the interface of two immiscible liquids using WS2 ethanol suspension and then were transferred onto SiO2/Si substrates. The wet processed WS2 films were found to have a high residual carbon content, which was reduced by sulfur vapor annealing as assessed by XPS. Field effect transistors (FETs) fabricated using bottom-electrode configuration exhibit Ion/Ioff ratios of 20 after annealing in the atmosphere of sulfur vapor. We conclude that TMD liquid processing can produce operational devices, but the fabrication of high-performance FETs needs to avoid organic solvents resulting in carbon contamination adversely affecting the device performance.



The authors would like to thank Nokia Technologies for the donation which made this research work possible. This work was done using equipment purchased under the Lomonosov Moscow State University Program of Development.


  1. 1.
    M. Fontana, T. Deppe, A.K. Boyd, M. Rinzan, A.Y. Liu, M. Paranjape, P. Barbara, Sci. Rep. 3, 1634 (2013)CrossRefGoogle Scholar
  2. 2.
    V. Podzorov, M.E. Gershenson, C. Kloc, R. Zeis, E. Bucher, Appl. Phys. Lett. 84, 3301 (2004)CrossRefGoogle Scholar
  3. 3.
    L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335, 947 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Bernardi, M. Palummo, J. Grossman, Nano Lett. 13, 3664–3664 (2013)CrossRefGoogle Scholar
  5. 5.
    W. Ki, X. Huang, J. Lia, D. Young, Y. Zhang, J. Mater. Res. 22(5), 390 (2007)CrossRefGoogle Scholar
  6. 6.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 3, 147 (2011)CrossRefGoogle Scholar
  7. 7.
    W.M. Ranjith Divigalpitiya, S. Roy Morrison, R.F. Frindt, Thin Solid Films 186, 177 (1990)CrossRefGoogle Scholar
  8. 8.
    A. Berkdemir, H.R. Gutierrez, A.R. Botello-Mendez, N. Perea-Lopez, A.L. Elias, C.-I. Chia, B. Wang, V.H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, M. Terrones, Sci. Rep. 3, 1755 (2013)CrossRefGoogle Scholar
  9. 9.
    Thermo Scientific XPS [Online]. (XPS Reference, 2015), Accessed 4 May 2015
  10. 10.
    V.V. Atuchin, E.N. Galashov, O.Y. Khyzhun, V.L. Bekenev, L.D. Pokrovsky, Y.A. Borovlev, V.N. Zhdankov, J. Solid State Chem. 236, 2479 (2016)Google Scholar
  11. 11.
    E. Lassner, W.-D. Schubert, E. Luederitz, H.U. Wolf, Ulmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2012)Google Scholar
  12. 12.
    P.K. Chu, L. Li, Mater. Chem. Phys. 96, 253 (2005)CrossRefGoogle Scholar
  13. 13.
    A.C. Ferrari, J. Robertson, Philos. Trans. R. Soc. A 362, 2477 (2004)CrossRefGoogle Scholar
  14. 14.
    Z. Lin, B. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones, M. Pimenta, M. Terrones, 2D Mater. 3, 022002 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Center for Electrochemical Energy StorageSkolkovo Institute of Science and TechnologyMoscowRussian Federation
  2. 2.Faculty of Physics and International Laser CenterM.V. Lomonosov Moscow State UniversityMoscowRussian Federation
  3. 3.Nokia TechnologiesCambridgeUK

Personalised recommendations