Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 23, pp 17778–17783 | Cite as

Emission and HR-XRD study of InGaAs/GaAs quantum wells with InAs quantum dots grown at different temperatures

  • L. G. Vega-Macotela
  • T. V. Torchynska
  • G. PolupanEmail author
Article

Abstract

GaAs/In0.15Ga0.85As/GaAs QWs with embedded InAs QDs grown at different temperatures have been studied by means of the photoluminescence (PL), X ray diffraction (XRD) and high resolution XRD (HR-XRD) methods. PL study has detected varying of QD parameters and HR-XRD permits monitoring the QW parameters. It is shown that increasing the QD growth temperature up to 510 °C leads to raising the QD sizes, to shift of QD emission peak to low energy and increasing the PL intensity of QDs. Simultaneously Ga/In atom intermixing is realized mainly between the InGaAs buffer and InAs wetting layers and did not influent on the InAs QD composition. At higher QD growth temperatures (525–535 °C) the PL intensity of QDs decreases significantly together with decreasing the QD heights and the shift of PL peaks into higher energy. Fitting the HR-XRD results has revealed that Ga/In atom intermixing involves the composition changes in buffer and wetting layers, as well as in QDs. The mentioned optical and structural effects have been discussed in details.

Notes

Acknowledgements

The work was supported by CONACYT Mexico (Project 258224) and by SIP-IPN, Mexico (Projects 20170821, 20170667 and 20170854). The authors thank the Dr. A. Stintz from Center of High Technology Materials at University of New Mexico, Albuquerque, USA for growing the studied QD structures.

References

  1. 1.
    J.S. Kim, C.-R. Lee, B.S. Choi, H.-S. Kwack, C.W. Lee, E.D. Sim, D.K. Oh, Appl. Phys. Lett. 90, 153111 (2007)CrossRefGoogle Scholar
  2. 2.
    K. Amtout, S. Raghavan, P. Rotella, G. von Winckel, A. Stinz, S. Krishna, J. Appl. Phys. 96, 3782 (2004)CrossRefGoogle Scholar
  3. 3.
    T.V. Torchynska, A. Stintz, J. Appl. Phys. 108(2), 024316 (2010)CrossRefGoogle Scholar
  4. 4.
    D. Haft, R.J. Warburton, K. Karrai, S. Huant, G. Medeiros-Ribeiro, J. Garsia, W. Schoenfeld, P.M. Petroff, Appl. Phys. Lett. 78, 2946 (2001)CrossRefGoogle Scholar
  5. 5.
    J. Shao, T.E. Vandervelde, A. Barve, W.Y. Jang, A. Stintz, S. Krishna, J. Vac. Sci. Technol. B 29(3), 03C123 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Geller, A. Marent, T. Nowozin, D. Feise, K. Potschke, N. Akcay, N. Oncan, D. Bimberg, Physica E 40, 1811–1814 (2008)CrossRefGoogle Scholar
  7. 7.
    H.W. Li, B.E. Kardyna, D.J.P. Ellis, A.J. Shields, I. Farrer et al., Appl. Phys. Lett. 93, 153503 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Takahasi, T. Kaizu, J. Cryst. Growth 311, 1761–1763 (2009)CrossRefGoogle Scholar
  9. 9.
    D. Bimberg, M. Grundman, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 2001), p. 328Google Scholar
  10. 10.
    D.P. Popescu, P.G. Eleseev, A. Stintz, K.J. Malloy, J. Appl. Phys. 94, 2454–2458 (2003)CrossRefGoogle Scholar
  11. 11.
    B. Jo, J. Kim, K.J. Lee, H. Kim, D. Park, C.R. Lee, J.S. Kim et al., Thin Solid Films 518, 6429 (2010)CrossRefGoogle Scholar
  12. 12.
    I.J. Guerrero Moreno, T.V. Torchynska, J.L. Casas, Espinola, Physica E 51, 37–41 (2013)CrossRefGoogle Scholar
  13. 13.
    J.S. Peng, B. Xu, X.I. Ye, P. Jin, Z.C. Wang, Micrielect. Eng. 93, 1–4 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Krost, F. Heinrichsdorff, D. Bimberg, A. Darhuber, G. Bauer, Appl. Phys. Lett. 68, 785 (1996)CrossRefGoogle Scholar
  15. 15.
    Q.D. Zhuang, J.M. Li, Y.P. Zeng, S.F. Yoon, H.Q. Zheng et al., J. Cryst. Growth 212, 352 (2000)CrossRefGoogle Scholar
  16. 16.
    H. Li, T. Mei, W.D.H. Zhang, S.F. Yoon, H. Yuan., J. Appl. Phys. 98, 054905 (2005)CrossRefGoogle Scholar
  17. 17.
    P. Mukhopadhyay, P. Das, S. Pathak, E.Y. Chang, D. Biswas, 2011 International conference on compound semiconductor manufacturing technology, CSMANTECH, Indian Wells, 16–19 May 2011Google Scholar
  18. 18.
    T.V. Torchynska. J. Palacios Gomez, G.P. Polupan, F.G.Becerril Espinoza, A.Garcia Borquez, N.E. Korsunskaya, L.Yu. Khomenkova, Appl. Surf. Sci. 167, 197 (2000)CrossRefGoogle Scholar
  19. 19.
    T.V. Torchynska, L.Yu. Khomenkova, N.E. Korsunska, M.K. Sheinkman, Y. Goldstein, E. Savir, Physica B 273–274, 955 (1999)CrossRefGoogle Scholar
  20. 20.
    I. De Caro, C. Giannini, I. Tapfer, Phys. Rev. B 56, 9744 (1997)CrossRefGoogle Scholar
  21. 21.
    T.V. Torchynska, J. Lumin. 136, 75 (2013)CrossRefGoogle Scholar
  22. 22.
    T. Srinivazan, S.N. Singh, U. Tivari et al., J. Cryst. Growth 280, 378 (2005)CrossRefGoogle Scholar
  23. 23.
    A.G. Suprunets, M.A. Vasilenko, N.L. Shwartz, J. Phys. 690, 012011 (2016)Google Scholar
  24. 24.
    H. Zhang, Y. Chen, G. Zhou, C. Tang, Z. Wang, Nanoscale Res. Lett. 7, 600 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.ESIME– Instituto Politécnico NacionalMexicoMexico
  2. 2.ESFM– Instituto Politécnico NacionalMexicoMexico

Personalised recommendations