Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 23, pp 17750–17760 | Cite as

Analysis and control of energy transfer processes and luminescence across the visible spectrum in PFO:P3OT blends

  • Wesley Renzi
  • Flavio FranchelloEmail author
  • Neusmar J. A. Cordeiro
  • Vitor B. Pelegati
  • Carlos L. César
  • Edson Laureto
  • José L. Duarte


A systematic study of luminescence from blends made of poly (9, 9-dioctylfluorene-2, 7-diyl) (PFO) and poly (3-octylthiophene-2, 5-diyl) (P3OT), and its photophysics was carried out. Acceptor concentration influence and sample preparation conditions was analyzed, particularly regarding the solvent, in order to control emission through the entire visible spectrum, and to understand the physical processes involved. An additional emission band observed in PFO:P3OT films with low concentration of P3OT was studied through confocal luminescence microscopy and was attributed to a decrease of energy transfer between P3OT molecules leading to an emission through chains with smaller conjugation length. The extra emission was also separated from the others by Time Resolved Emission Spectroscopy due to the fact that its lifetime is longer than those of the other emissions. Balance control of the emission through PFO (blue), low conjugation chains of P3OT (green) and P3OT aggregates (red) was possible changing the solvent and the way to prepare samples, that causes a greater or lesser amount of β phase in PFO. The study of the energy processes involved was also performed.



This work was supported by Brazilian agencies such as: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná (Fundação Araucária), and Instituto Nacional de Ciência e Tecnologia em Eletrônica Orgânica (INEO). The authors gratefully acknowledge Dr. Teresa D. Z. Atvars and Dr. Fernando J. Quites for their helpful discussions concerning this work, as well as ESPEC Laboratory-Central Multiusuário-PROPPG-UEL.

Supplementary material

10854_2017_7714_MOESM1_ESM.docx (853 kb)
Supplementary material 1 (DOCX 852 KB)


  1. 1.
    G. Jin, L. Xia, Z. Liu, H. Lin, J. Ling, H. Wu, L. Hou, Y. Mo, J. Mater. Chem. C 4, 905 (2016)CrossRefGoogle Scholar
  2. 2.
    D. Das, P. Gopikrishna, A. Singh, A. Dey, P.K. Iyer, Phys. Chem. Chem. Phys. 18, 7389 (2016)CrossRefGoogle Scholar
  3. 3.
    B. Gautier, X. Wu, F. Altal, S. Chen, J. Gao, Org. Electron. Phys. Mater. Appl. 28, 47 (2016)Google Scholar
  4. 4.
    N. Vilbrandt, A. Gassmann, H. Von Seggern, M. Rehahn, Macromolecules 49, 1674 (2016)CrossRefGoogle Scholar
  5. 5.
    H. Liu, L. Hu, F. Wu, L. Chen, Y. Chen, ACS Appl. Mater. Interfaces 8, 9821 (2016)CrossRefGoogle Scholar
  6. 6.
    H. Heo, H. Kim, D. Lee, S. Jang, L. Ban, B. Lim, J. Lee, Y. Lee, Macromolecules 49, 3328 (2016)CrossRefGoogle Scholar
  7. 7.
    J.B. Park, J.-H. Kim, D.-H. Hwang, Polym. Bull. 73, 2393 (2016)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, Q. Zhang, F. Liu, X. Wan, B. Kan, H. Feng, X. Yang, T.P. Russell, Y. Chen, Org. Electron. Phys. Mater. Appl. 28, 263 (2016)Google Scholar
  9. 9.
    M. Da Silva Ozorio, G.L. Nogueira, R.M. Morais, C. Da Silva Martin, C.J.L. Constantino, N. Alves, Thin Solid Films 608, 97 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Han, X. Zhuang, W. Shi, X. Yang, L. Li, J. Yu, Sens. Actuators B 225, 10 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Zhao, Z. Lin, Z. Zhou, H. Yao, W. Lv, H. Zhen, Q. Ling, Org. Electron. Phys. Mater. Appl. 31, 183 (2016)Google Scholar
  12. 12.
    D.-E. Kim, M.-J. Kang, G.-R. Park, N.-K. Kim, B.-J. Lee, Y.-S. Kwon, H.-K. Shin, J. Nanosci. Nanotechnol. 16, 2900 (2016)CrossRefGoogle Scholar
  13. 13.
    E. Angioni, M. Chapran, K. Ivaniuk, N. Kostiv, V. Cherpak, P. Stakhira, A. Lazauskas, S. Tamulevičius, D. Volyniuk, N.J. Findlay, T. Tuttle, J.V. Grazulevicius, P.J. Skabara, J. Mater. Chem. C 1, 1 (2016)Google Scholar
  14. 14.
    S. Ye, T. Hu, Z. Zhou, M. Yang, Q. Mei, Y. Liu, L. Liu, B. Zhai, Z. Jia, W. Huang, Org. Electron. 33, 235 (2016)CrossRefGoogle Scholar
  15. 15.
    D. Yang, Y. Duan, Y. Yang, N. Hu, X. Wang, F. Sun, Y. Duan, J. Lumin. 166, 77 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Wu, L. Ying, W. Yang, Y. Cao, WOLEDs and Organic Photovoltaics (Springer, Berlin, 2010)Google Scholar
  17. 17.
    M. Ariu, M. Sims, M.D. Rahn, J. Hill, A.M. Fox, D.G. Lidzey, M. Oda, J. Cabanillas-Gonzalez, D.D.C. Bradley, Phys. Rev. B 67, 195333 (2003)CrossRefGoogle Scholar
  18. 18.
    A.J. Cadby, P.A. Lane, H. Mellor, S.J. Martin, M. Grell, C. Giebeler, D.D.C. Bradley, M. Wohlgenannt, C. An, Z.V. Vardeny, Phys. Rev. B 62, 15604 (2000)CrossRefGoogle Scholar
  19. 19.
    A. Perevedentsev, Y. Sonnefraud, C.R. Belton, S. Sharma, A.E.G. Cass, S.A. Maier, J.-S. Kim, P.N. Stavrinou, D.D.C. Bradley, Nat. Commun. 6, 5977 (2015)CrossRefGoogle Scholar
  20. 20.
    D.D.C. Bradley, M. Grell, X. Long, H. Mellor, A.W. Grice, M. Inbasekaran, E.P. Woo, in Proceedings, Optical Probes of Conjugated Polymers (1997).
  21. 21.
    R. Valaski, M.L. Moreira, L. Micaroni, A.I. Hümmelgen, Braz. J. Phys. 33, 392 (2003)CrossRefGoogle Scholar
  22. 22.
    K. Yoshino, S. Nakajima, D.H. Park, K. Yoshino, Jpn. J. Appl. Phys. 27, L716 (1988)CrossRefGoogle Scholar
  23. 23.
    A. Fujii, H. Kawahara, M. Yoshida, Y. Ohmori, K. Yoshino, J. Phys. D 28, 2135 (1995)CrossRefGoogle Scholar
  24. 24.
    R. Singh, J. Kumar, R.K. Singh, A. Kaur, K.N. Sood, R.C. Rastogi, Polymer 46, 9126 (2005)CrossRefGoogle Scholar
  25. 25.
    G. Wang, C. Yuan, Z. Lu, Y. Wei, J. Lumin. 68, 49 (1996)CrossRefGoogle Scholar
  26. 26.
    K. Yoshino, Y. Manda, K. Sawada, M. Onoda, R. Sugimoto, Solid State Commun. 69, 143 (1989)CrossRefGoogle Scholar
  27. 27.
    B. Xu, S. Holdcroft, Macromolecules 26, 4467 (1993)Google Scholar
  28. 28.
    M.A.T. da Silva, E.F. Thomazini, M. Albertini, W. Renzi, F. Franchello, I.F.L. Dias, J.L. Duarte, L.C. Poças, S.A. Lourenço, Opt. Mater. 62, 119 (2016)CrossRefGoogle Scholar
  29. 29.
    K. Kanemoto, M. Shishido, T. Sudo, I. Akai, H. Hashimoto, T. Karasawa, Chem. Phys. Lett. 402, 549 (2005)CrossRefGoogle Scholar
  30. 30.
    B. Van Der Zanden, R. Van De Krol, J. Schoonman, A. Goossens, Appl. Phys. Lett. 84, 2539 (2004)CrossRefGoogle Scholar
  31. 31.
    P.L. Santos, L.A. Cury, F.B. Dias, A.P. Monkman, J. Lumin. 172, 118 (2016)CrossRefGoogle Scholar
  32. 32.
    R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, A. Salleo, Nat. Mater. 12, 1038 (2013)CrossRefGoogle Scholar
  33. 33.
    A. Monkman, C. Rothe, S. King, F. Dias, Polyfluorenes (Springer, Berlin, 2008), pp. 187–225CrossRefGoogle Scholar
  34. 34.
    B. Yao, B. Zhang, J. Ding, Z. Xie, J. Zhang, L. Wang, Org. Electron. Phys. Mater. Appl. 14, 897 (2013)Google Scholar
  35. 35.
    X. Chen, H. Wan, H. Li, F. Cheng, W. Nie, B. Yao, Z. Xie, L. Wang, J. Zhang, Org. Electron. Phys. Mater. Appl. 13, 475 (2012)Google Scholar
  36. 36.
    X. Zhang, Z. Lei, Q. Hu, J. Lin, Y. Chen, L. Xie, W. Lai, W. Huang, Appl. Phys. Express. 7, 101601 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Departament of PhysicsUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Institute of Physics Gleb WataghinUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations