Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 22, pp 16718–16727 | Cite as

Pd nanoparticle loaded TiO2 semiconductor for photocatalytic degradation of Paraoxon pesticide under visible-light irradiation

  • Amir Homayoun Keihan
  • Hossein Rasoulnezhad
  • Azadeh Mohammadgholi
  • Sharareh Sajjadi
  • Reza Hosseinzadeh
  • Mousa Farhadian
  • Ghader HosseinzadehEmail author
Article

Abstract

Overuse of the organophosphorus pesticides such as Paraoxon in agriculture industry has raised significant threats to the environment by contamination of soils and groundwaters. Therefore, extensive studies have been carried out to develop an effective method for removing of these poisonous pollutants from contaminated resources. In the current study, Pd nanoparticle loaded TiO2 nanocomposites with different weight percentages of Pd were prepared via a facile photoreduction method and for the first time, were used for photocatalytic degradation of Paraoxon under visible-light irradiation. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy techniques. In these nanocomposites, the presence of Pd nanoparticles enhances the photocatalytic activity of TiO2 by their surface plasmon resonance effect and also by narrowing the band gap energy of TiO2. The results of photocatalytic activity measurements indicate that the nanocomposite with 0.8 wt% content of Pd (PT0.8) has the best photocatalytic activity. The result of total organic carbon test shows that Paraoxon was completely mineralized by PT0.8 photocatalyst after 120 min, under visible-light irradiation.

References

  1. 1.
    T.T. Marrs, R.L. Maynard, F. Sidell, Chemical Warfare Agents: Toxicology and Treatment (Wiley, Chichester, 2007)CrossRefGoogle Scholar
  2. 2.
    B. Singh, J. Kaur, K. Singh, Crit. Rev. Microbiol. 40, 146 (2014)CrossRefGoogle Scholar
  3. 3.
    M.B. Kralj, U. Černigoj, M. Franko, P. Trebše, Water Res. 41, 4504 (2007)CrossRefGoogle Scholar
  4. 4.
    B. Liu, L. McConnell, A. Torrents, Chemosphere 44, 1315 (2001)CrossRefGoogle Scholar
  5. 5.
    K. Dai, T. Peng, H. Chen, J. Liu, L. Zan, Environ. Sci. Technol. 43, 1540 (2009)CrossRefGoogle Scholar
  6. 6.
    M.N. Chong, B. Jin, C.W. Chow, C. Saint, Water Res. 44, 2997 (2010)CrossRefGoogle Scholar
  7. 7.
    E.H. Kong, J. Lim, J.H. Lee, W. Choi, H.M. Jang, Appl. Catal. B 176, 76 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Landmann, E. Rauls, W. Schmidt, J. Phys. Condens. Matter 24, 195503 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett. 81, 454 (2002)CrossRefGoogle Scholar
  10. 10.
    M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, J. Lee, M.H. Cho, J. Mater. Chem. A 2, 637 (2014)CrossRefGoogle Scholar
  11. 11.
    Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 136, 458 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Chen, F. Qiu, W. Xu, S. Cao, H. Zhu, Appl. Catal. A 495, 131 (2015)CrossRefGoogle Scholar
  13. 13.
    A.H. Keihan, R. Hosseinzadeh, M. Farhadian, H. Kooshki, G. Hosseinzadeh, RSC Adv. 6, 83673 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater. 21, 2233 (2009)CrossRefGoogle Scholar
  15. 15.
    Z. Jafari, N. Mokhtarian, G. Hosseinzadeh, M. Farhadian, A. Faghihi, F. Shojaie, J. Energy Chem. 25, 393 (2016)CrossRefGoogle Scholar
  16. 16.
    B. Roose, S. Pathak, U. Steiner, Chem. Soc. Rev. 44, 8326 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Maragatha, S. Rajendran, T. Endo, S. Karuppuchamy, J. Mater. Sci. Mater. Electron. 28, 5281 (2016)CrossRefGoogle Scholar
  18. 18.
    V. Krishnakumar, S. Boobas, J. Jayaprakash, M. Rajaboopathi, B. Han, M. Louhi-Kultanen, J. Mater. Sci. Mater. Electron. 27, 7438 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Ryu, W. Choi, Environ. Sci. Technol. 38, 2928 (2004)CrossRefGoogle Scholar
  20. 20.
    R. Su, R. Tiruvalam, Q. He, N. Dimitratos, L. Kesavan, C. Hammond, J.A. Lopez-Sanchez, R. Bechstein, C.J. Kiely, G.J. Hutchings, ACS Nano 6, 6284 (2012)CrossRefGoogle Scholar
  21. 21.
    N.N. Ilkhechi, M. Ghorbani, M. Mozammel, M. Khajeh, J. Mater. Sci. Mater. Electron. 28, 3571 (2017)CrossRefGoogle Scholar
  22. 22.
    V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc. 126, 4943 (2004)CrossRefGoogle Scholar
  23. 23.
    Y. Tian, T. Tatsuma, J. Am. Chem. Soc. 127, 7632 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, Z.Y. Li, Nano Lett. 5, 1237 (2005)CrossRefGoogle Scholar
  25. 25.
    K.H. Leong, H.Y. Chu, S. Ibrahim, P. Saravanan, Beilstein J Nanotechnol 6, 428 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Yin, Z. Li, J. Kou, Z. Zou, Environ. Sci. Technol. 43, 8361 (2009)CrossRefGoogle Scholar
  27. 27.
    A.M.E. Badawy, T.P. Luxton, R.G. Silva, K.G. Scheckel, M.T. Suidan, T.M. Tolaymat, Environ. Sci. Technol. 44, 1260 (2010)CrossRefGoogle Scholar
  28. 28.
    J. Jiang, G. Oberdörster, P. Biswas, J. Nanopart. Res. 11, 77 (2009)CrossRefGoogle Scholar
  29. 29.
    D.B. Williams, C.B. Carter, The Transmission Electron Microscope (Springer, New York, 1996)CrossRefGoogle Scholar
  30. 30.
    S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, C.W. Nan, J. Phys. Chem. C 114, 2903 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Cybula, J.B. Priebe, M.-M. Pohl, J.W. Sobczak, M. Schneider, A. Zielińska-Jurek, A. Brückner, A. Zaleska, Appl. Catal. B 152, 202 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Lee, M. Shin, M. Lee, Y.J. Hwang, Appl. Catal. B 165, 20 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 90, 1773 (2006)CrossRefGoogle Scholar
  34. 34.
    C.A. Emilio, M.I. Litter, M. Kunst, M. Bouchard, C. Colbeau-Justin, Langmuir 22, 3606 (2006)CrossRefGoogle Scholar
  35. 35.
    S. Ikeda, N. Sugiyama, B. Pal, G. Marcí, L. Palmisano, H. Noguchi, K. Uosaki, B. Ohtani, Phys. Chem. Chem. Phys. 3, 267–273 (2001)CrossRefGoogle Scholar
  36. 36.
    L. Ren, Y.P. Zeng, D. Jiang, Catal. Commun. 10, 645–649 (2009)CrossRefGoogle Scholar
  37. 37.
    B.K. Kaleji, M. Alijani, A. Aghaei, J. Mater. Sci. Mater. Electron. 27, 8524–8531 (2016)CrossRefGoogle Scholar
  38. 38.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669–13679 (1994)CrossRefGoogle Scholar
  39. 39.
    R. Kaur, B. Pal, New J. Chem. 39, 5966 (2015)CrossRefGoogle Scholar
  40. 40.
    E. Grabowska, A. Zaleska, S. Sorgues, M. Kunst, A. Etcheberry, C. Colbeau-Justin, H. Remita, J. Phys. Chem. C 117, 1955 (2013)CrossRefGoogle Scholar
  41. 41.
    J. Senthilnathan, L. Philip, Chem. Eng. J. 172, 678 (2011)CrossRefGoogle Scholar
  42. 42.
    S. Rengaraj, X.Z. Li, P.A. Tanner, Z.F. Pan, G.K.H. Pang, J. Mol. Catal. A 247, 36 (2006)CrossRefGoogle Scholar
  43. 43.
    H. Chen, M. Shen, R. Chen, K. Dai, T. Peng, Environ. Technol. 32, 1515 (2011)CrossRefGoogle Scholar
  44. 44.
    E. Evgenidou, I. Konstantinou, K. Fytianos, I. Poulios, T. Albanis, Catal. Today 124, 156 (2007)CrossRefGoogle Scholar
  45. 45.
    Y. Xiaodan, W. Qingyin, J. Shicheng, G. Yihang, Mater. Charact. 57, 333 (2006)CrossRefGoogle Scholar
  46. 46.
    X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, Q. Chen, Mater. Lett. 66, 370 (2012)CrossRefGoogle Scholar
  47. 47.
    A. Savio, J. Fletcher, K. Smith, R. Iyer, J. Bao, F.R. Hernández, Appl. Catal. B 182, 449 (2016)CrossRefGoogle Scholar
  48. 48.
    G. Prasad, P. Ramacharyulu, J.P. Kumar, A. Srivastava, B. Singh, Thin Solid Films 520, 5597 (2012)CrossRefGoogle Scholar
  49. 49.
    B. De, B. Voit, N. Karak, RSC Adv. 4, 58453 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Amir Homayoun Keihan
    • 1
  • Hossein Rasoulnezhad
    • 2
  • Azadeh Mohammadgholi
    • 3
  • Sharareh Sajjadi
    • 4
  • Reza Hosseinzadeh
    • 5
  • Mousa Farhadian
    • 6
  • Ghader Hosseinzadeh
    • 7
    Email author
  1. 1.Molecular Biology Research CenterBaqiyatallah University of Medical SciencesTehranIran
  2. 2.Department of Electrical & Electronics EngineeringStandard Research Institute (SRI)KarajIran
  3. 3.Department of Biology, Central Tehran BranchIslamic Azad UniversityTehranIran
  4. 4.Department of Biology, Roudehen BranchIslamic Azad UniversityRoudehenIran
  5. 5.Medical Laser Research Group, Medical Laser Research CenterACECRTehranIran
  6. 6.Young Researchers and Elite Club, Khomeinishahr BranchIslamic Azad UniversityKhomeinishahrIran
  7. 7.Department of Polymer Science and EngineeringUniversity of BonabBonabIran

Personalised recommendations