Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 21, pp 16199–16204 | Cite as

Optimization of energy storage density in relaxor (K, Na, Bi)NbO3 ceramics

  • Hong Tao
  • Jiagang WuEmail author
Article

Abstract

Energy storage properties have been widely investigated in lead-free relaxor ferroelectric ceramics due to high polarization saturation (P s) and low remnant polarization (P r). Among these lead-free relaxor ferroelectric ones, the investigation of energy storage in KNN-based ceramics showed some unique characteristics. In this work, (K0.48Na0.52)1−3x Bi x NbO3 relaxor ceramics were synthesized by the conventional solid-state method, and the phase structure of diffusion rhombohedral (R) phase can be found. In addition, the recoverable energy storage density (W rec) increased with the increase of the electric fields, and a high W rec of ~1.04 J/cm3 under a low dielectric breakdown strength (DBS) of ~189 kV/cm was achieved in the ceramics with x = 0.04. In particular, the influences of composition and sintering parameters on the W rec values were also studied. As a result, an optimum W rec value can be possessed in the relaxor KNN-based ceramics even if low DBS values were applied, which maybe benefits the development of energy storage materials and devices.

Notes

Acknowledgements

Authors gratefully acknowledge the supports of the National Science Foundation of China (NSFC No. 51272164).

References

  1. 1.
    J.G. Hao, Z.J. Xu, R.Q. Chu et al., Enhanced energy-storage properties of (1−x)[(1−y)(Bi0.5Na0.5)TiO3y(Bi0.5K0.5)TiO3]–x(K0.5Na0.5)NbO3 lead-free ceramics. Solid State Commun. 204, 19–22 (2015)CrossRefGoogle Scholar
  2. 2.
    Q.Y. Hu, L. Jin, T. Wang et al., Dielectric and temperature stable energy storage properties of 0.88BaTiO30.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloy. Compd. 640, 416–420 (2015)CrossRefGoogle Scholar
  3. 3.
    Y.Y. Zhao, J.W. Xu, L. Yang et al., High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+complexion. J. Alloy Compd. 666, 209–216 (2016)CrossRefGoogle Scholar
  4. 4.
    L.H. Luo, B.Y. Wang, X.J. Jiang et al., Energy storage properties of (1−x)(Bi0.5Na0.5)TiO3xKNbO3 lead-free ceramics. J. Mater. Sci. 49, 1659–1665 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Borkar, V.N. Singh, B.P. Singh et al., Room temperature lead-free relaxor–antiferroelectric electroceramics for energy storage applications. RSC. Adv. 4, 22840–22847 (2014)CrossRefGoogle Scholar
  6. 6.
    B.Y. Qu, H.L. Du, Z.T. Yang et al., Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering. RSC. Adv. 6, 34381–34389 (2016)CrossRefGoogle Scholar
  7. 7.
    T. Wang, L. Jin, C.C. Li et al., Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98(2), 559–566 (2015)CrossRefGoogle Scholar
  8. 8.
    D.G. Zheng, R.Z. Zuo, D.S. Zhang et al., Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc. 98(9), 2692–2695 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Chen, B.J. Chu, Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3ceramics. J. Eur. Ceram. Soc. 36, 81–88 (2016)CrossRefGoogle Scholar
  10. 10.
    Q. Xu, T.M. Li, H. Hao et al., Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 35, 545–553 (2015)CrossRefGoogle Scholar
  11. 11.
    B.Y. Qu, H.L. Du, Z.T. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C 4, 1795–1803 (2016)CrossRefGoogle Scholar
  12. 12.
    Z.B. Shen, X.H. Wang, B.C. Luo et al., BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146–18153 (2015)CrossRefGoogle Scholar
  13. 13.
    X.R. Wang, Y. Zhang, X.Z. Song et al., Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc. 32, 559–567 (2012)CrossRefGoogle Scholar
  14. 14.
    X.F. Su, M. Tomozawa, J.K. Nelson, Effect of crystallizable glass addition on sintering and dielectric behaviors of barium titanate ceramics. J. Mater. Sci. 24, 2135–2140 (2013)Google Scholar
  15. 15.
    T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15, 1767–1769 (1996)CrossRefGoogle Scholar
  16. 16.
    X.H. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dialect. 3, 1330001 (2013)CrossRefGoogle Scholar
  17. 17.
    N. Ortega, A. Kumar, J.F. Scott et al., Relaxor-ferroelectric superlattices: high energy density capacitors. J. Phys. 24, 445901 (2012)Google Scholar
  18. 18.
    T.M. Correia, M. McMillen, M.K. Rokosz et al., A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 96(9), 2699–2702 (2013)CrossRefGoogle Scholar
  19. 19.
    T. Zheng, H.J. Wu, Y. Yuan et al., The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017)CrossRefGoogle Scholar
  20. 20.
    M.H. Zhang, K. Wang, Y.J. Du et al., High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J. Am. Chem. Soc. 139, 3889–3895 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Liebault, J. Vallayer, D. Goeuriot et al., How the trapping of charges can explain the dielectric breakdown performance of alumina ceramics. J. Eur. Ceram. Soc. 21, 389–397 (2001)CrossRefGoogle Scholar
  22. 22.
    A. Young, G. Hilmas, S.C. Zhang et al., Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90(5), 1504–1510 (2007)CrossRefGoogle Scholar
  23. 23.
    Z.M. Geng, K. Li, D.L. Shi et al., Effect of Sr and Ba-doping in optical and electrical properties of KNN based transparent ceramics. J. Mater. Sci. 26, 6769–6775 (2015)Google Scholar
  24. 24.
    K. Li, F.L. Li, Y. Wang et al., Hot-pressed K0.48Na0.52Nb1–xBixO3 (x = 0.05–0.15) lead-free ceramics for electro-optic applications. Mater. Chem. Phys. 131, 320–324 (2011)CrossRefGoogle Scholar
  25. 25.
    D. Yang, C. Ma, Z.P. Yang et al., Optical and electrical properties of pressureless sintered transparent (K0.37Na0.63)NbO3-based ceramics. Ceram. Int. 42, 4648–4657 (2016)CrossRefGoogle Scholar
  26. 26.
    N. Xu, Y.F. Liu, Z.L. Yu et al., Enhanced energy storage properties of lead-free (1−x)Bi0.5Na0.5TiO3xSrTiO3 antiferroelectric ceramics by two-step sintering method”. J. Mater. Sci. 27, 12479–12484 (2016)Google Scholar
  27. 27.
    J.X. Ding, Y.F. Liu, Y.N. Lu et al., Enhanced energy-storage properties of SrTiO3 doped (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free antiferroelectric ceramics. Mater. Lett. 114, 107–110 (2014)CrossRefGoogle Scholar
  28. 28.
    H.Y. Ma, X.M. Chen, J. Wang et al., Structure, dielectric and ferroelectric properties of 0.92Na0.5Bi0.5TiO3–0.06BaTiO3–0.02K0.5Na0.5NbO3 lead-free ceramics: effect of Co2O3 additive. Ceram. Int. 39, 3721–3729 (2013)CrossRefGoogle Scholar
  29. 29.
    B. Stawarczyk, A. Emslander, M. Roos et al., Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters. Dent. Mater. J. 33(5), 591–598 (2014)CrossRefGoogle Scholar
  30. 30.
    Z. Song, H. Liu, S. Zhang et al., Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J. Eur. Ceram. Soc. 34, 1209–1217 (2014)CrossRefGoogle Scholar
  31. 31.
    Z.T. Yang, H.L. Du, S. Qu et al., Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics. J. Mater. Chem. A 4, 13778–13785 (2016)CrossRefGoogle Scholar
  32. 32.
    X.M. Chen, W.Y. Pan, H.H. Tian et al., Microstructure, dielectric and ferroelectric properties of 0.94Bi0.5Na0.5TiO30.06BaTiO3 (NBTB) and 0.05BiFeO30.95NBTB ceramics: effect of sintering atmosphere. J. Alloy. Compd. 509, 1824–1829 (2011)CrossRefGoogle Scholar
  33. 33.
    X.M. Chen, H.Y. Ma, W.Y. Pan et al., Microstructure, dielectric and ferroelectric properties of (NaxBi0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics: effect of Na nonstoichiometry. Mater. Chem. Phys. 132, 368–374 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Materials ScienceSichuan UniversityChengduChina

Personalised recommendations