Skip to main content
Log in

Studies on the structure, critical behavior and magnetocaloric effect in (LaBi)SrCoO cobaltite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present paper, we report the structure, the magnetic, the critical behavior, the magnetocaloric properties and the universal curve of La0.45Bi0.15Sr0.4CoO3 cobaltite. Polycrystalline sample was synthesized in air by the solid state reaction method at a sintering temperature of 1200 °C. Phase purity, structure, size, and crystallinity were investigated using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The Reitveld refinement of XRD pattern shows that the sample adopts a rhombohedral system with \(R\overline 3 c\) space group. Critical exponents obtained by the modified Arrott plot technique, Kouvel–Fisher method, and critical isothermal analysis are close to the theoretical prediction of 3D Heisenberg model values, revealing the characteristic of short-range ferromagnetic interactions. With these values, the M(T,µ0H) relations below and above the curie temperature collapse into two universal branches in the asymptotic critical region following the scaling equation. Moreover, the experimental magnetic entropy changes measured for various fields collapse onto a master curve, confirming the universal behavior of the magnetocaloric effect in this system. Particularly, its magnetic-field dependence obeys a power-law fitting, where the exponent n = 0.98 is quite far from the value calculated at Curie temperature from the critical exponents. This difference is related to the magnetic inhomogeneity in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric effect and its applications. Institute of Physics Publishing, Bristol, (2003)

    Book  Google Scholar 

  2. R. M’nassri, N.C. Boudjada, A. Cheikhrouhou, Nearly constant magnetic entropy change involving the enhancement of refrigerant capacity in (La 0.6 Ba 0.2 Sr 0.2 MnO3) 1– x/(Co2O3) x composite. Ceram Int 42, 7447 (2016)

    Article  Google Scholar 

  3. M. Halder, S.M. Yusuf, M.D. Mukadam, K. Shashikala, Magnetocaloric effect and critical behavior near the paramagnetic to ferrimagnetic phase transition temperature in TbCo2–xFex. ,Phys. Rev. B 81, 174402 (2010)

    Article  Google Scholar 

  4. N. Khan, A. Midya, K. Mydeen, P. Mandal, A. Loidl, D. Prabhakaran, Critical behavior in single-crystalline La0.67Sr0.33CoO3. Phys. Rev. B 82, 064422 (2010)

    Article  Google Scholar 

  5. G. Brinceno, H. Chang, X. Sun, P.G. Shulz, X.D. Xiang, A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science 270, 273 (1995)

    Article  Google Scholar 

  6. V. Golovanov, L. Mihaly, A.R. Moodenbuagh, Magnetoresistance in La1–xSrxCoO3 for 0.05 ≤ x ≤ 0.25. Phys. Rev. B 53, 8207 (1996)

    Article  Google Scholar 

  7. R. Mahendiran, A.K. Raychaudhuri, Magnetoresistance of the spin-state-transition compound La1–xSrxCoO3. Phys. Rev. B 54, 16044 (1996)

    Article  Google Scholar 

  8. M.A. Señarís-Rodríguez, J.B. Goodenough, Magnetic and transport properties of the system La1–xSrxCoO3–δ (0 < x ≤ 0.50). J. Solid State Chem. 118, 323 (1995)

    Article  Google Scholar 

  9. S. Mukherjee, R. Ranganathan, P.S. Anilkumar, P.A. Joy, Static and dynamic response of cluster glass in La0.5Sr0.5CoO3. Phys. Rev. B 54, 9267 (1996)

    Article  Google Scholar 

  10. S. Mukherjee, P. Raychaudhuri, A.K. Nigam, Critical behavior in La0.5Sr0.5CoO3. Phys. Rev. B 61, 8651 (2000)

    Article  Google Scholar 

  11. N.N. Loshkareva, E.A. Gan’shina, B.I. Belevtsev, Y.P. Sukhorukov, E.V. Mostovshchikova, A.N. Vinogradov, V.B. Krasovitsky, I.N. Chukanova, Spin states and phase separation in La1–xSr xCoO3 (x = 0.15, 0.25, 0.35) films: optical, magneto-optical, and magnetotransport studies. Phys. Rev. B 68, 024413 (2003)

    Article  Google Scholar 

  12. Y. Moritomo, M. Takeo, X.J. Liu, T. Akimoto, A. Nakamura, Metal-insulator transition due to charge ordering in R1/2 Ba1/2CoO3, Phys. Rev. B 58, R13334 (1998)

    Article  Google Scholar 

  13. V. Franco, A. Conde, D. Sidhaye, B.L.V. Prasad, P. Poddar, S. Srinath, M.H. Phan, H. Srikanth, Field dependence of the magnetocaloric effect in core-shell nanoparticles. J. Appl. Phys. 107, 09A902 (2010)

    Article  Google Scholar 

  14. V. Franco, A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials. Int. J. Refrig. 33, 465 (2010)

    Article  Google Scholar 

  15. R. M’nassri, Magnetocaloric effect and its implementation in critical behaviour study of La0.67Ca0.33Mn0. 9Fe0.1O3, Bulletin of Materials. Science 39, 551 (2017)

    Google Scholar 

  16. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969)

    Article  Google Scholar 

  17. T. Roisnel, J. Rodriguez-Carvajal, Computer ProgramFULLPROF, LLB-LCSIM, May, (2003)

  18. R. M’nassri, N. Chniba Boudjada, A. Cheikhrouhou, 3D-Ising ferromagnetic characteristics and magnetocaloric study in Pr0.4Eu0.2Sr0.4MnO3 manganite, J. Alloys Compd. 640, 183 (2015)

    Article  Google Scholar 

  19. F. Saadaoui, R. M’nassri, H. Omrani, M. Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, Critical behavior and magnetocaloric study in La0.6Sr0.4CoO3 cobaltite prepared by a sol–gel process. RSC Adv. 6, 50968 (2016)

    Article  Google Scholar 

  20. R. M’nassri, N.C. Boudjada, A. Cheikhrouhou, Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J. Alloys Compd. 626, 20 (2015)

    Article  Google Scholar 

  21. T. Sarkar, A.K. Raychaudhuri, S.M. A K Bera and, Yusuf, Effect of size reduction on the ferromagnetism of the manganite La1–xCaxMnO3 (x = 0.33). New J. Phys. 12, 123026 (2010)

    Article  Google Scholar 

  22. F. Saadaoui, M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Effects of bismuth doping on the physical properties of La0.6–xBixSr0.4CoO3 (0 ≤ x ≤ 0.15) cobaltites. J Supercond. Nov. Magn. 26, 3043 (2013)

    Article  Google Scholar 

  23. J. Mira, J. Rivas, M. Vazquez, J.M. Garcia-Beneytez, J. Arcas, R.D. Sanchez, M.A. Senaris-Rodriguez, Critical exponents of the ferromagnetic-paramagnetic phase transition of La 1–x Sr x CoO 3 (0.20 < x < 0. 3 0). Phys. Rev. B 59, 123 (1999)

    Article  Google Scholar 

  24. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964)

    Article  Google Scholar 

  25. A. Arrot, J.E. Noakes, Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786 (1967)

    Article  Google Scholar 

  26. J. Fan, L. Ling, B. Hong, L. Zhang, L. Pi, Y. Zhang, Critical properties of the perovskite manganite La0.1Nd0.6Sr0.3MnO3. Phys. Rev. B 81, 144426 (2010)

    Article  Google Scholar 

  27. A.K. Pramanik, A. Banerjee, Critical behavior at paramagnetic to ferromagnetic phase transition in Pr0.5Sr0.5MnO3 : a bulk magnetization study. Phys. Rev. B 79, 214426 (2009)

    Article  Google Scholar 

  28. M.E. Fisher, The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30, 615 (1967)

    Article  Google Scholar 

  29. J.S. Kouvel, M.E. Fisher, Detailed magnetic behavior of nickel near its curie point. Phys. Rev. 136, A1626 (1964)

    Article  Google Scholar 

  30. B. Widom, Equation of state in the neighborhood of the critical point. J. Chem. Phys. 43, 3898 (1965)

    Article  Google Scholar 

  31. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York, (1971)

    Google Scholar 

  32. R. Tetean, I.G. Deac, E. Burzo, A. Bezergheanu, Magnetocaloric and magnetoresistance properties of La2/3Sr1/3Mn1–xCoxO3 compounds. J. Magn. Magn. Mater. 320, 179 (2008)

    Article  Google Scholar 

  33. H. Oesterreicher, F.T. Parker, Magnetic cooling near Curie temperatures above 300 K. J. Appl. Phys. 55, 4334 (1984)

    Article  Google Scholar 

  34. V. Franco, J.S. Blázquez, A. Conde, The influence of Co addition on the magnetocaloric effect of Nanoperm-type amorphous alloys. Appl. Phys. Lett. 100, 064307 (2006)

    Google Scholar 

  35. V. Franco, J.S. Blazquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512 (2006)

    Article  Google Scholar 

  36. V. Franco, A. Conde, J.M. Romero-Enrique, J.S. Blazquez, A universal curve for the magnetocaloric effect: an analysis based on scaling relations. J. Phys. 20, 285207 (2008)

    Google Scholar 

  37. R. M’nassri, Field dependence of magnetocaloric properties in La0.6Pr 0.4Fe10.7Co 0.8Si1.5. J. Supercond. Nov. Magn. 27, 1787 (2014)

    Article  Google Scholar 

  38. T.L. Phan, P. Zhang, T.D. Thanh, S.C. Yu, Crossover from first-order to second-order phase transitions and magnetocaloric effect in La0.7Ca0.3Mn0.91Ni0.09O3. Appl. Phys. 115, 17A912 (2014)

    Article  Google Scholar 

  39. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites. J. Alloys Compd. 619, 627 (2015)

    Article  Google Scholar 

  40. H. Ben Khlifa, F. Ayadi, R. M’nassri, W. Cheikhrouhou-Koubaa, G. Schmerber, A. Cheikhrouhou, Screening of the synthesis route on the structural, magnetic and magnetocaloric properties of La0.6Ca 0.2Ba0.2MnO3 manganite: a comparison between solid-solid state process and a combination polyol process and Spark Plasma Sintering. J. Alloys Compd. 712, 451 (2017)

    Article  Google Scholar 

  41. R. Thaljaoui, W. Boujelben, M. Pekala, K. Pekala, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Magnetocaloric study of monovalent-doped manganites Pr0.6Sr0.4–xNaxMnO3 (x = 0–0.2). J. Mater. Sci. 48, 3894 (2013)

    Article  Google Scholar 

  42. A. Selmi, M. Khelifi, H. Rahmouni, R. M’nassri, K. Khirouni, N. Chniba Boudjada, A. Cheikhrouhou, Electrical conductivity analysis and magnetic properties of Pr0.7Ca0.3Mn0.95Co0.05O3 oxide. J. Mater. Sci. 28, 1901 (2017)

    Google Scholar 

  43. J.Y. Law, R.V. Ramanujan, V. Franco, Tunable curie temperatures in Gd alloyed Fe–B–Cr magnetocaloric materials. J. Alloys Compd. 508, 14 (2010)

    Article  Google Scholar 

  44. J.C. Debnath, R. Zeng, J.H. Kim, P. Shamba, D.P. Chen, S.X. Dou, Effect of frozen spin on the magnetocaloric property of La0.7Ca0.3CoO3 polycrystalline and single crystal samples. J. Alloys Compd. 510, 125 (2012)

    Article  Google Scholar 

  45. A. Meenakshi,, R. Mahato, Effect of Fe substitution on structural, magnetic and magnetocaloric properties of nanocrystalline La0.7Te0.3Mn1–xFexO3 (x = 0. 1, 0.3). Physica B 511, 83–88 (2017)

    Article  Google Scholar 

  46. N. Kallel, S. Kallel, A. Hagaza, M. Oumezzine, Magnetocaloric properties in the Cr-doped La0.7Sr0.3MnO3 manganites. Physica B 404, 285–288 (2009)

    Article  Google Scholar 

  47. H. Yang, Y.H. Zhu, T. Xian, J.L. Jiang, Synthesis and magnetocaloric properties of La0.7Ca0.3MnO3 nanoparticles with different sizes. J. Alloys Compd 555, 150–155 (2013)

    Article  Google Scholar 

  48. K. Raju, N. Pavan Kumar, P. Venugopal Reddy, D.H. Yoon, Influence of Eu doping on magnetocaloric behavior of La0.67Sr0.33MnO3. Phys. Lett. A 379(16–17), 1178–1182 (2015)

    Article  Google Scholar 

  49. X.X. Zhang, G.H. Wen, F.W. Wang, W.H. Wang, C.H. Yu, G.H. Wu, Magnetic entropy change in Fe-based compound LaFe10.6Si2.4. Appl. Phys. Lett. 77(19), 3072 (2000)

    Article  Google Scholar 

  50. N. Kumar Swamy, N. Pavan Kumar, P.V. Reddy, M. Gupta, S.S. Samatham, D. Venkateshwarulu et al., Specific heat and magnetocaloric effect studies in multiferroic YMnO3. J. Therm. Anal. Calorim. 119(2), 1191–1198 (2014)

    Article  Google Scholar 

  51. V.M. Prida, V. Franco, V. Vega, J.L. Sanchez-Llamazares, J.J. Sunol, A. Conde, B. Hernando, Magnetocaloric effect in melt-spun FePd ribbon alloy with second order phase transition. J. Alloys Compd. 509, 190 (2011)

    Article  Google Scholar 

  52. R. M’nassri, A. Selmi, N.C. Boudjada, A. Cheikhrouhou, Field dependence of magnetocaloric properties of 20% Cr-doped Pr0.7Ca0.3MnO3 perovskite. J. Therm. Anal. Calorim. 129, 53 (2017)

    Article  Google Scholar 

  53. V. Franco, A. Conde, V. Provenzano, R.D. Shull, Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X0.1 (X = Al, Cu, Ga, Mn, Fe, Co). J. Magn. Magn. Mater. 322, 218 (2010)

    Article  Google Scholar 

  54. A. Sakka, R. M’nassri, N. Chniba Boudjada, M. Ommezzine, A. Cheikhrouhou, Effect of trivalent rare earth doping on magnetic and magnetocaloric properties of Pr0.5(Ce,Eu,Y)0.1Sr0.4MnO3 manganites. Appl. Phys. A 122, 1–12 (2016)

    Article  Google Scholar 

  55. C.M. Bonilla, J. Herrero-Albillos, F. Bartolome, L.M. Garcıa, M. Parra-Borderıas, V. Franco, Universal behavior for magnetic entropy change in magnetocaloric materials: an analysis on the nature of phase transitions. Phys. Rev. B 81, 224424 (2010)

    Article  Google Scholar 

  56. R. M’nassri, A. Cheikhrouhou, Magnetocaloric properties in ordered double-perovskite Ba2Fe1–xCrxMoO6 (0 ≤ x ≤ 1). J. Kor. Physical Soc. 64, 879 (2014)

    Article  Google Scholar 

  57. R. M’nassri, A. Cheikhrouhou, Evolution of magnetocaloric behavior in oxygen deficient La2/3Ba1/3MnO3–δ manganites. J. Supercond. Nov. Magn. 27, 1463 (2014)

    Article  Google Scholar 

  58. R. M’nassri, M. Khelifi, H. Rahmouni, A. Selmi, K. Khirounic, N. Chniba-Boudjada, A. Cheikhrouhoud, Study of physical properties of cobalt substituted Pr0.7Ca0.3MnO3 ceramics. Ceram. Int. 42, 6145 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Tunisian Ministry of Higher Education and Scientific Research and the Neel Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Saadaoui or R. M’nassri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadaoui, F., M’nassri, R., Mleiki, A. et al. Studies on the structure, critical behavior and magnetocaloric effect in (LaBi)SrCoO cobaltite. J Mater Sci: Mater Electron 28, 15500–15511 (2017). https://doi.org/10.1007/s10854-017-7438-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7438-9

Navigation