Micromorphology investigation of GaAs solar cells: case study on statistical surface roughness parameters

  • Ştefan Ţălu
  • Papež Nikola
  • Dinara Sobola
  • Amine Achour
  • Shahram Solaymani


The purpose of this work is surface characterization of GaAs solar cell using atomic force microscopy. The surface appearance influences the optical properties of the cells. It impacts light trapping and consequently affect the efficiency of the solar cells. In case of nano-structural surface, the properties are strongly depends on its geometrical characteristics. Surface appearance was studied by atomic force microscopy (AFM). Fractal analysis was done by the triangulation method and evaluation of statistical metrics was carrying out on the basis of AFM-data, before and after heating. The results of fractal analysis show the correlation of fractal dimension and statistical characteristics of surface topography. Characterization technique and data processing methodology are essential for description of the surface condition.



Research described in the paper was financially supported by Internal Grant Agency of Brno University of Technology, grant No. FEKT-S-17-4626, by project Sensor, Information and Communication Systems SIX CZ.1.05/2.1.00/03.0072 and by the Grant Agency of the Czech Republic under no. GACR 15-05259S.

Complaince with ethical standards

Conflict of interest

The authors claim to have no financial interest, either directly or indirectly, in the products or information listed in the article. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    L. Dejam, S.M. Elahi, H.H. Nazari, H. Elahi, S. Solaymani, A. Ghaderi, Structural and optical characterization of ZnO and AZO thin films: the influence of post-annealing. J. Mater. Sci.27, 685–696 (2016)Google Scholar
  2. 2.
    V. Dalouji, S. Elahi, Solaymani,, A. Ghaderi, H. Elahi, Carbon films embedded by nickel nanoparticles: fluctuation in hopping rate and variable-range hopping with respect to annealing temperature. Appl. Phys. A 122, 541 (2016)CrossRefGoogle Scholar
  3. 3.
    V. Dalouji, S. Elahi, Solaymani,, A. Ghaderi, Absorption edge and the refractive index dispersion of carbon-nickel composite films at different annealing temperatures. Eur. Phys. J. Plus 131, 84 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Solaymani, A. Ghaderi, N.B. Nezafat, Comment on: characterization of microroughness parameters in titanium nitride thin films grown by dc magnetron sputtering. J. Fusion Energy 31, 591–591 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Molamohammadi, C. Luna, A. Arman, S. Solaymani, A. Boochani, A. Ahmadpourian, A. Shafiekhani, Preparation and magnetoresistance behavior of nickel nanoparticles embedded in hydrogenated carbon film. J Mater Sci 26, 6814–6818 (2015)Google Scholar
  6. 6.
    Roughness of solar cells. Available at: Accessed 31 Mar 2017
  7. 7.
    M. Topič, Sever M., B. LIPOVŠEK, A. ČAMPA, J. KRČ, Approaches and challenges in optical modelling and simulation of thin-film solar cells. Sol. Energy Mater. Sol. Cells 135, 57–66 (2015)CrossRefGoogle Scholar
  8. 8.
    Ultrafast Laser Texturing for Enhanced Solar Cell Performance and Lower Cost. Available at: Accessed 31 Mar 2017
  9. 9.
    Dmitruk NL, Borkovskaya OY, Dmitruk IN, Mamontova IB, Analysis of thin film surface barrier solar cells with a microrelief interface. Sol. Energy Mater. Sol. Cells 76, 625–635 (2003)CrossRefGoogle Scholar
  10. 10.
    P. Škarvada, P. Tománek, P. Koktavý, R. Macků, J. Šicner, M. Vondra, D. Dallaeva, S. Smith, L. Grmela, A variety of microstructural defects in crystalline silicon solar cells. Appl. Surf. Sci. 312, 50–56 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Khanna, P.K. Basu, A. Filipovic, V. Shanmugam, C. Schmiga, A.G. Aberle, T. Mueller, Influence of random pyramid surface texture on silver screen-printed contact formation for monocrystalline silicon wafer solar cells. Sol. Energy Mater. Sol. Cells 132, 589–596 (2015)CrossRefGoogle Scholar
  12. 12.
    Q. Jiang, J. Lu, J. Zhang, Y. Yuan, H. Cai, C. Wu, R. Sun, B. Lu, X. Pan, Z. Ye, Texture surfaces and etching mechanism of ZnO:Al films by a neutral agent for solar cells. Sol. Energy Mater. Sol. Cells 130, 264–271 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Yang, R.A. van Swaaij, H. Tan, O. Isabella, M. Zeman, Modulated surface textured glass as substrate for high efficiency microcrystalline silicon solar cells. Sol Energy Mater. Sol. Cells 133, 156–162 (2015)CrossRefGoogle Scholar
  14. 14.
    B. Dou, R. Jia, H. Li, C. Chen, Y. Sun, Y. Zhang, W. Ding, Y. Meng, X. Liu, T. Ye, Fabrication of ultra-small texture arrays on multicrystalline silicon surface for solar cell application. Sol. Energy 91, 145–151 (2013)CrossRefGoogle Scholar
  15. 15.
    X. Ren, W. Zi, Q. Ma, F. Xiao, F. Gao, S. Hu, Y. Zhou, S.F. Liu, Topology and texture controlled ZnO thin film electro deposition for superior solar cell efficiency. Sol. Energy Mater. Sol. Cells 134, 54–59 (2015)CrossRefGoogle Scholar
  16. 16.
    L. Ding, L. Fanni, D. Messerschmidt, S. Zabihzadeh, M.M. Masis, S. Nicolay, C. Ballif, Tailoring the surface morphology of zinc oxide films for high-performance micromorph solar cells. Sol. Energy Mater. Sol. Cells 128, 378–385 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Erayerkan, V. Chawla, I. Repins, M.A. Scarpulla, Interplay between surface preparation and device performance in CZTSSe solar cells: effects of KCN and NH4OH etching. Sol. Energy Mater. Sol. Cells 136, 78–85 (2015)CrossRefGoogle Scholar
  18. 18.
    H.B.T. Li, R.H. Franken , J.K. Rath, R.E. Schropp, Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n–i–p solar cells. Sol. Energy Mater. Sol. Cells 93, 338–349 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Zeman, O. Isabella, S. Solntsev, K. Jäger, Modelling of thin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 119, 94–111 (2013)CrossRefGoogle Scholar
  20. 20.
    R.F. Múgica-Vidal, F. Alba-Elías, E. Sainz-García, J. Ordieres-Meré, Atmospheric plasma-polymerization of hydrophobic and wear-resistant coatings on glass substrates. Surf. Coat. Technol. 259, 374–385 (2014)CrossRefGoogle Scholar
  21. 21.
    I. Roppolob, N. Shahzad, A. Sacco, E. Tresso, M. Sangermano, Multifunctional NIR-reflective and self-cleaning UV-cured coating for solar cell applications based on cycloaliphatic epoxy resin. Prog. Org. Coat 77, 458–462 (2014)CrossRefGoogle Scholar
  22. 22.
    Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Ghaderi, L. Dejam, A. Boochani, S.M. Elahi, Microstructure and micromorphology of ZnO thin films: case study on Al doping and annealing effects. Superlattices Microstruct. 93, 109–121 (2016). doi: 10.1016/j.spmi.2016.03.003 CrossRefGoogle Scholar
  23. 23.
    Ş. Ţălu,, Micro and nanoscale characterization of three dimensional surfaces. Basics and Applications., ISBN 978-606-690-349-3 (Napoca Star Publishing House, Cluj-Napoca, 2015)Google Scholar
  24. 24.
    D. Dallaeva, Ş. Ţălu,, S. Stach, P. Škarvada, P. Tománek, L. Grmela, AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates. Appl. Surf. Sci. 312, 81–86 (2014). doi: 10.1016/j.apsusc.2014.05.086 CrossRefGoogle Scholar
  25. 25.
    S. Stach, D. Dallaeva, Ş. Ţălu, P. Kaspar, P. Tománek, S. Giovanzana, L. Grmela, Morphological features in aluminum nitride epilayers prepared by magnetron sputtering. Mater. Sci-Pol. 33, 175–184 (2015). doi: 10.1515/msp-2015-0036 Google Scholar
  26. 26.
    S. Ramazanov, Ş. Ţălu,, D. Sobola, S. Stach, G. Ramazanov, Epitaxy of silicon carbide on silicon: micromorphological analysis of growth surface evolution. Superlattices Microstruct. 86, 395–402 (2015). doi: 10.1016/j.spmi.2015.08.007 CrossRefGoogle Scholar
  27. 27.
    Ş. Ţălu, S. Stach, J. Zaharieva, M. Milanova, D. Todorovsky, S. Giovanzana, Surface roughness characterization of poly(methylmethacrylate) films with immobilized Eu(III) β-Diketonates by fractal analysis. Int. J. Polym. Anal. Charact. 19, 404–421 (2014). doi: 10.1080/1023666X.2014.904149 CrossRefGoogle Scholar
  28. 28.
    Ş. Ţălu,, S. Stach, M. Ikram, D. Pathak, T. Wagner, J.-M. Nunzi, Surface roughness characterization of ZnO:TiO2—organic blended solar cells layers by atomic force microscopy and fractal analysis. Int. J. Nanosci. 13, 1450020–1450021 (2014). doi: 10.1142/S0219581X14500203 CrossRefGoogle Scholar
  29. 29.
    Ş. Ţălu, A.J. Ghazai, S. Stach, A. Hassan, Z. Hassan, M. Ţălu, Characterization of surface roughness of Pt Schottky contacts on quaternary n-Al0.08In0.08Ga0.84N thin film assessed by atomic force microscopy and fractal analysis. J. Mater. Sci. 25, 466–477 (2014). doi: 10.1007/s10854-013-1611-6 Google Scholar
  30. 30.
    S. Stach, Ż. Garczyk,, Ş. Ţălu,, S. Solaymani, A. Ghaderi, R. Moradian, N.B. Nezafat, S.M. Elahi, H. Gholamali, Stereometric parameters of the Cu/Fe NPs thin films. J. Phys. Chem. C 119, 17887–17898 (2015). doi: 10.1021/acs.jpcc.5b04676 CrossRefGoogle Scholar
  31. 31.
    Ş. Ţălu,, M. Bramowicz, S. Kulesza, A. Ghaderi, S. Solaymani, H. Savaloni, R. Babaei, Micromorphology analysis of specific 3-D surface texture of silver chiral nanoflower sculptured structures. J. Ind. Eng. Chem. 43, 164–169 (2016). doi: 10.1016/j.jiec.2016.08.003 CrossRefGoogle Scholar
  32. 32.
    N. Naseri, S. Solaymani, A. Ghaderi, M. Bramowicz, S. Kulesza, Ş. Ţălu,, M. Pourreza, S. Ghasemi, Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro-and nanoscale. RSC Adv. 7, 12923–12930 (2017). doi: 10.1039/c6ra28795f CrossRefGoogle Scholar
  33. 33.
    Ş. Ţălu,, M. Bramowicz, S. Kulesza, A. Ghaderi, V. Dalouji, S. Solaymani, M.F. Fathi Kenari, M. Ghoranneviss, Fractal features and surface micromorphology of diamond nanocrystals. J. Microsc. 264, 143–152 (2016). doi: 10.1111/jmi.12422 CrossRefGoogle Scholar
  34. 34.
    Ş. Ţălu,, S. Solaymani, M. Bramowicz, S. Kulesza, A. Ghaderi, S. Shahpouri, S.M. Elahi, Effect of electric field direction and substrate roughness on three-dimensional self-assembly growth of copper oxide nanowires. J. Mater. Sci. 27, 9272–9277 (2016). doi: 10.1007/s10854-016-4965-8 Google Scholar
  35. 35.
    Ş. Ţălu,, S. Solaymani, M. Bramowicz, N. Naseri, S. Kulesza, A. Ghaderi, Surface micromorphology and fractal geometry of Co/CP/X (X = Cu, Ti, SM and Ni) nanoflake electrocatalysts. RSC Adv. 6, 27228–27234 (2016). doi: 10.1039/C6RA01791F CrossRefGoogle Scholar
  36. 36.
    A. Arman, T. Ghodselahi, M. Molamohammadi, S. Solayani, H. Zahrabi, A. Ahmadpourian, Phys. Chem. Surf. 51, 575–578 (2015)Google Scholar
  37. 37.
    N. Begum, A.S. Bhatti, F. Jabeen, S. Rubini, F. MARTELLI, in Phonon Confinement Effect in III-V Nanowires, ed. by P. Prete ed. (Intech, Rijeka, 2010)), p. 258Google Scholar
  38. 38.
    Gwyddion 2.37 software (Copyright © 2004–2007, 2009–2014 Petr Klapetek, David Nečas, Christopher Anderson). Available from: Accessed 10th June 2017
  39. 39.
    C. Douketis, Z. Wang, T.L. Haslett, M. Moskovits, Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy. Phys. Rev. B 51, 11022–11032 (1995)CrossRefGoogle Scholar
  40. 40.
    Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Shafikhani, A. Ghaderi, M. Ahmadirad, Gold nanoparticles embedded in carbon film: micromorphology analysis. J. Ind. Eng. Chem. 35, 158–166 (2016). doi: 10.1016/j.jiec.2015.12.029 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering GraphicsTechnical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Faculty of Electrical Engineering and Communication, Physics DepartmentBrno University of TechnologyBrnoCzech Republic
  3. 3.National Institute of Scientific ResearchVarennesCanada
  4. 4.Department of Physics, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations