Skip to main content
Log in

Structural and high temperature conduction studies of (Na0.46Bi0.46Ba0.08) (MnxTi1−xO3)–CuO lead-free piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline lead-free (Na0.46Bi0.46Ba0.08)(MnxTi1−xO3) + 0.2CuO ceramics (x = 0.0, 0.5, 2.0, 3.0 wt%) were prepared via solid-state reaction method. X-ray diffraction (XRD) analysis confirmed the formation of single-phase perovskite structure and indicated the presence of morphotropic phase boundary, where the tetragonal and rhombohedral phases co-existed for all the synthesized compositions. Scanning electron microscopy (SEM) analysis revealed that the average grain size decreased with the increase in Mn content. Impedance spectroscopy (IS) indicated that Mn doping was found to decrease the grain boundary resistance. Two semi-circles were observed for higher Mn content which indicates the contribution of both bulk grains and grain boundaries. Non-Debye type and temperature dependent relaxation phenomenon was also revealed by IS studies. The activation energies at different frequencies were found to be 0.05–0.9 eV, indicating hopping charge conduction mechanism. These results have comprehensive implications for the expanded use of BNT based lead free piezoelectric ceramics for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Zhou et al., Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics. Mater. Lett. 59(13), 1649–1652 (2005)

    Article  Google Scholar 

  2. M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41(9), 11436–11444 (2015)

    Article  Google Scholar 

  3. Q.K. Muhammad et al., Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci. 51(22) 10048–10058(2016)

    Article  Google Scholar 

  4. R. Sun et al., Dielectric, electromechanical coupling properties of Mn-doped Na0.5Bi0.5TiO3–BaTiO3 lead-free single crystal. Appl. Phys. A 103(1), 199–205 (2011)

    Article  Google Scholar 

  5. W. Jo et al., CuO as a sintering additive for (Bi1/2Na1/2)TiO3–BaTiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics. J. Eur. Ceram. Soc. 31(12), 2107–2117 (2011)

    Article  Google Scholar 

  6. M.A. Rafiq, M.E. Costa, P.M. Vilarinho, Pairing high piezoelectric coefficients, d33, with high curie temperature (TC) in lead-free (K, Na)NbO3. ACS Appl. Mater. Interfaces 8(49), 33755–33764 (2016)

    Article  Google Scholar 

  7. M. Hagiyev, I. Ismailzade, A. Abiyev, Pyroelectric properties of (Na½Bi½)TiO3 ceramics. Ferroelectrics 56(1), 215–217 (1984)

    Article  Google Scholar 

  8. T. Takenaka, K. Sakata, Dielectric, piezoelectric and pyroelectric properties of (BiNa)1/2TiO3-based ceramics. Ferroelectrics 95(1), 153–156 (1989)

    Article  Google Scholar 

  9. R. Zuo et al., Tantalum doped 0.94Bi0.5Na0.5TiO30.06BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28(4), 871–877 (2008)

    Article  Google Scholar 

  10. J. Rödel et al., Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  Google Scholar 

  11. K. Pengpat et al., Phase formation and electrical properties of lead-free bismuth sodium titanate–potassium niobate ceramics. Curr. Appl. Phys. 8(3), 241–245 (2008)

    Article  Google Scholar 

  12. M.A. Rafiq et al., Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys. Chem. Chem. Phys. 17(37), 24403–24411 (2015)

    Article  Google Scholar 

  13. L.-X. He, C.-E. Li, Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. J. Mater. Sci. 35(10), 2477–2480 (2000)

    Article  Google Scholar 

  14. C. Galassi et al., Processing and characterization of high Qm ferroelectric ceramics. J. Eur. Ceram. Soc. 19(6), 1237–1241 (1999)

    Article  Google Scholar 

  15. X. Wang et al., Hall effect and dielectric properties of Mn-doped barium titanate. Microelectr. Eng. 66(1), 855–859 (2003)

    Google Scholar 

  16. A. Tkach, P.M. Vilarinho, A.L. Kholkin, Structure–microstructure–dielectric tunability relationship in Mn-doped strontium titanate ceramics. Acta Mater. 53(19), 5061–5069 (2005)

    Article  Google Scholar 

  17. Q. Xu, et al., Effect of MnO addition on structure and electrical properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics prepared by citrate method. Mater. Sci. Eng. B. 130(1), 94–100 (2006)

    Article  Google Scholar 

  18. J. Lv, T. Karaki, M. Adachi, Effect of CuO doping on (Bi,Na)0.83Ba0. 17TiO3 piezoelectric ceramics. Jpn. J. Appl. Phys. 49(9S), 09MD06 (2010)

    Google Scholar 

  19. A. Kamal et al., Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0. 995Mn0.005O3) lead-free piezoelectric ceramics. Appl. Phys. A 122(12), 1037 (2016)

    Article  Google Scholar 

  20. Q. Zhang et al., Temperature dependence of dielectric/piezoelectric properties of (1−x)Bi(Mg1/2Ti1/2)O3–xPbTiO3 ceramics with an MPB composition. J. Am. Ceram. Soc. 93(10), 3330–3334 (2010)

    Article  Google Scholar 

  21. B.-J. Chu et al., Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics. J. Eur. Ceram. Soc. 22(13), 2115–2121 (2002)

    Article  Google Scholar 

  22. R. Subramaniyan et al., Growth and characterization of undoped and Mn doped lead-free piezoelectric NBT–KBT single crystals. Mater. Res. Bull. 53, 136–140 (2014)

    Article  Google Scholar 

  23. A. Tkach, P. Vilarinho, A. Kholkin, Dependence of dielectric properties of manganese-doped strontium titanate ceramics on sintering atmosphere. Acta Mater. 54(20), 5385–5391 (2006)

    Article  Google Scholar 

  24. S. Zha, C. Xia, G. Meng, Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J. Power Sources 115(1), 44–48 (2003)

    Article  Google Scholar 

  25. S. Sen, R. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys. 87(2), 256–263 (2004)

    Article  Google Scholar 

  26. J.R. Macdonald, Impedance spectroscopy. Ann. Biomed. Eng. 20(3), 289–305 (1992)

    Article  Google Scholar 

  27. K.S. Rao et al., A diffuse phase transition study on Ba2+ substituted (Na0.5Bi0.5)TiO3 ferroelectric ceramic. J. Alloys Compd. 509(25), 7121–7129 (2011)

    Article  Google Scholar 

  28. D.K. Sharma et al., Impedance and modulus spectroscopy characterization of sodium-bismuth titanate-based lead-free ferroelectric materials. J. Adv. Dielectr. 2(01), 1250002 (2012)

    Article  Google Scholar 

  29. J. Suchanicz, J. Kusz, H. Böhm, Structural and electric characteristics of (Na0.5Bi0.5)0.50Ba0.50TiO3 and (Na0.5Bi0.5)0.20Ba0.80TiO3 ceramics. Mater. Sci. Eng. B, 97(2), 154–159 (2003)

    Article  Google Scholar 

  30. A.K. Jonscher, The universal dielectric response. Nature 267(5613), 673–679 (1977)

    Article  Google Scholar 

  31. M.A. Rafiq, et al., Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Cryst. Growth Des. 15(3), 1289–1294 (2015)

    Article  Google Scholar 

  32. R. Pinho et al., Texturization of potassium sodium niobate (KNN) ceramics in the presence of CuO and MnO. Microsc. Microanal. 21(S6), 130–131 (2015)

    Article  Google Scholar 

  33. O. Raymond et al., Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97(8), 084107 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Rafiq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, M.A., Rasheed, M., Muhammad, Q.K. et al. Structural and high temperature conduction studies of (Na0.46Bi0.46Ba0.08) (MnxTi1−xO3)–CuO lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 28, 15009–15020 (2017). https://doi.org/10.1007/s10854-017-7375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7375-7

Navigation