Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 18, pp 14040–14048 | Cite as

The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature

  • Seçkin Altındal Yerişkin
  • Muzaffer BalbaşıEmail author
  • İkram Orak
Article

Abstract

Au/n-Si(MS) and Au/(0.07graphene-PVA)/n-Si(MPS) structures were fabricated on the same wafer at identical conditions and their electrical characteristics have been investigated by using current–voltage (I–V) and capacitance/conductance–voltage(C/G–V) measurements at room temperature. The rectifying rate(RR at ±5 V), barrier height(Φ Bo ) and surface states(N ss ) (at 0.5 eV) for MS structure were found from the I–V measurements as 1.96 × 103, 0.757 eV and 9.67 × 1014 eV−1 cm−2 for MS whereas those for MPS structure were 9.67 × 105, 0.790 eV and 1.04 × 1013 eV−1 cm−2, respectively. The reverse current mechanisms were also discussed by considering Poole–Frenkel and Schottky emissions. The values of RR and N ss of MPS structure are 493.37 times higher and 92.98 times lower than these values of MS structure. The values of doping atoms (N D ), Fermi energy (E F ) and BH were extracted from the reverse bias C −2 –V characteristics at 1 MHz as 2.42 × 1015 cm−3, 0.260 and 0.994 eV for the MS and 0.856 × 1015 cm−3, 0.234 and 0.828 eV for the MPS structures, respectively. These results show that the use of (graphene-PVA) interlayer improves the performance of MS structure and so it may be good alternative to replace the conventional SiO2 due to reduce the number of oxygen vacancies and yields low density of N ss , and increase the BH.

Notes

Acknowledgements

This study was supported by Gazi University Scientific Research Project (Project Number: GU-BAP. 06/201613).

References

  1. 1.
    V.R. Reddy, Thin Solid Films 556, 300 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Kaya, E. Marıl, Ş. Altındal, İ. Uslu, Microelectron. Eng. 149, 166 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, A. Aytemur, Ceram. Int. 42, 3322 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbaşı, İ. Uslu, Results Phys. 6, 180 (2016)CrossRefGoogle Scholar
  5. 5.
    M. Gökçen, T. Tunç, Ş. Altındal, İ. Uslu, Curr. Appl. Phys. 12, 525 (2012)CrossRefGoogle Scholar
  6. 6.
    O. Çiçek, H. Uslu Tecimer, S.O. Tan, H. Tecimer, İ. Orak, Ş. Altındal, Compos. Part B 113, 14 (2017)CrossRefGoogle Scholar
  7. 7.
    S.A. Yerişkin, M. Balbaşı, A. Tataroğlu, J. Appl. Polym. Sci. (2016). doi: 10.1002/APP.43827 Google Scholar
  8. 8.
    A.F. Özdemir, S.G. Aydın, D.A. Aldemir, Ş.S. Görsoy, Synth. Met. 161, 692 (2011)CrossRefGoogle Scholar
  9. 9.
    S.M. Sze, in Physics of Semiconductor Devices. (Wiley, Toronto, 1981)Google Scholar
  10. 10.
    C.V.S. Reddy, X. Han, Q.Y. Zhu, M.L.Q. Mai, W. Chen, Microelectron. Eng. 83, 281 (2006)CrossRefGoogle Scholar
  11. 11.
    H. Uslu, Ş. T. Altindal, Tunç, İ. Uslu, T.S. Mammadov, J. Appl. Polym. Sci. 120, 322 (2011)CrossRefGoogle Scholar
  12. 12.
    R.T. Tung, Mat. Sci. Eng. 35, 1 (2001)CrossRefGoogle Scholar
  13. 13.
    Ç. Bilkan, S. Zeyrek, S.E. San, Ş. Altındal, Mater. Sci. Semicond. Process. 32, 137 (2015)CrossRefGoogle Scholar
  14. 14.
    Ö. Gülü, Ş. Aydoğan, A. Türüt, Thin Solid Films 520, 1944 (2012)CrossRefGoogle Scholar
  15. 15.
    J.H. Werner, H. Guttler, J. Appl. Phys. 69, 1522 (1991)CrossRefGoogle Scholar
  16. 16.
    E. Özavcı, S. Demirezen, U. Aydemir, Ş. Altındal, Sens. Actuators A. Phys. 194, 259 (2013)CrossRefGoogle Scholar
  17. 17.
    M.S.P. Reddy, H.S. Kang, J.H. Lie, V.R. Reddy, J.S. Jang, Appl. Polym. Sci. 131, 39773 (2014)Google Scholar
  18. 18.
    V.R. Reddy, V. Janardhanam, C.H. Leem, C.J. Choi, Superlattices Microstruct. 67, 242 (2014)CrossRefGoogle Scholar
  19. 19.
    Ş.A. Yasemin, T. Asar, S. Altındal, S. Özçelik, Philos. Mag. 95, 2885 (2015)CrossRefGoogle Scholar
  20. 20.
    H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)CrossRefGoogle Scholar
  21. 21.
    A.F. Özdemir, A. Turut, A. Kökçe, Semicond. Sci. Technol. 21, 298 (2006)CrossRefGoogle Scholar
  22. 22.
    T. Tunc, Ş. Altındal, I. Uslu, I. Dökme, Mater. Sci. Semicond. Process. 14, 139 (2011)CrossRefGoogle Scholar
  23. 23.
    U. Aydemir, İ. Taşçıoğlu, Ş. Altındal, İ. Uslu, Mater. Sci. Semicond. Process. 16, 1865 (2013)CrossRefGoogle Scholar
  24. 24.
    E.H. Nicollian, J.R. Brews, MOS Physics and Technology. (Wiley, New York, 1982)Google Scholar
  25. 25.
    H. Norde, J. Appl. Phys. 50, 5052 (1979)CrossRefGoogle Scholar
  26. 26.
    S.K. Cheung, N.V. Cheung, Appl. Phys. Lett. 49, 85 (1986)CrossRefGoogle Scholar
  27. 27.
    K.E. Bohlin, J. Appl. Phys. 60, 1223 (1986)CrossRefGoogle Scholar
  28. 28.
    B.H. Lee, Y. Jeon, K. Zawadzki, W.J. Qi, J. Lee, Appl. Phys. Lett. 74, 3143 (1999)CrossRefGoogle Scholar
  29. 29.
    Y.P. Song, R.L. Meirhaeghe, W.H. Laflere, F. Cardon, Solid-State Electron. 29, 633 (1986)CrossRefGoogle Scholar
  30. 30.
    İ. Taşçıoğlu, W.A. Farooq, R. Turan, Ş. Altındal, F. Yakuphanoğlu, J. Alloys Compd. 590, 157 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Yıldırım, M. Gökçen, Bull. Mater. Sci. 37, 257 (2014)CrossRefGoogle Scholar
  32. 32.
    M. Gökçen, T. Tunç, Ş. Altındal, İ. Uslu, Mater. Sci. Eng. B 177, 416 (2012)CrossRefGoogle Scholar
  33. 33.
    A. Tataroğlu, Chin. Phys. B 22, 068402 (2013)CrossRefGoogle Scholar
  34. 34.
    E. Arslan, S. Bütün, Y. Şafak, H. Uslu, İ. Taşçıoğlu, Ş. Altındal, Microelectron. Reliab. 51, 370 (2011)CrossRefGoogle Scholar
  35. 35.
    Ş. M. Aydoğan, Sağlam, A. Türüt, Polymer 46, 563 (2005)CrossRefGoogle Scholar
  36. 36.
    J.P. Sulivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403 (1991)CrossRefGoogle Scholar
  37. 37.
    J. Osvald, E. Burain, Solid State Electron. 42, 19 (1998)CrossRefGoogle Scholar
  38. 38.
    Ş. Karataş, N. Yıldırım, A. Türüt, Superlattices Microstruct. 64, 483 (2013)CrossRefGoogle Scholar
  39. 39.
    S.O. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, İ. Orak, Ş. Altındal, J. Mater. Sci. (2017). doi: 10.1007/s10854-016-4843-4 Google Scholar
  40. 40.
    H.G. Çetinkaya, Ş. J. Altındal, İ. Orak, İ. Uslu, Mater. Sci. (2017). doi: 10.1007/s10854-017-6490-9 Google Scholar
  41. 41.
    V.R. Reddy, V. Manjunath, V. Janardhanam, Y. Ho Kil, C.J. Choi, J. Electron. Mater. (2014). doi: 10.1007/s11664-014-3177-3 Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Seçkin Altındal Yerişkin
    • 1
  • Muzaffer Balbaşı
    • 1
    Email author
  • İkram Orak
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringGazi UniversityAnkaraTurkey
  2. 2.Department of Physics, Faculty of Science and ArtsBingöl UniversityBingölTurkey

Personalised recommendations