Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 17, pp 12509–12513 | Cite as

TiO2 nanotube arrays: hydrothermal fabrication and photocatalytic activities

  • Xishun Jiang
  • Qibin Lin
  • Yongchun Zhang
  • Kexiu Dong
  • Yangyi Zhang
  • Yonghua Shi


Titanium dioxide nanotube arrays (TiO2 NTAs) with rutile phase have been fabricated successfully via a two-step hydrothermal method. TiO2 nanorod arrays (TiO2 NRAs) are first hydrothermally grown on FTO substrate. Then the TiO2 NTAs can be obtained by controlling the HCl concentration of the hydrothermal etching process. The TiO2 NTAs have been characterized by X-ray diffractometer, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible spectroscope. Evolution of TiO2 nanoarrays are accompanied by enhanced of the surface area and optical properties. Compared with TiO2 NRAs, the prepared TiO2 NTAs is more efficient in the photodegradation of methyl orange. These results reveal that the hydrothermal chemical etching provide a flexible and straightforward route for design and preparation of TiO2 NTAs, promising for new opportunities in photocatalysts and other fields.


TiO2 Photocatalytic Activity Methyl Orange Nanorod Array Methyl Orange Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Anhui Provincial Natural Science Foundation (1608085ME95), the Anhui University Provincial Natural Science Research Project, China (KJ2016A524 and KJ2015A153), the Higher Education Excellent Youth Talents Foundation of Anhui Province (gxyqZD2016328 and gxyqZD2016329), and the Research Project of Chuzhou University (2015qd04).


  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    M.Y. Wang, D.J. Zheng, M.D. Ye, C.C. Zhang, B.B. Xu, C.J. Lin, L. Sun, Z.Q. Lin, Small 11, 1436 (2015)CrossRefGoogle Scholar
  3. 3.
    W. Zhou, H. Liu, R.I. Boughton, G. Du, J. Lin, J. Wang, D. Liu, J. Mater. Chem. 20, 5993 (2010)CrossRefGoogle Scholar
  4. 4.
    C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc. 80, 3157 (1997)CrossRefGoogle Scholar
  5. 5.
    Q.F. Zhang, S. Yodyingyong, J.T. Xi, D. Myers, G.Z. Cao, Nanoscale 4, 1436 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Liu, A. Chen, Langmuir 21, 8409 (2005)CrossRefGoogle Scholar
  7. 7.
    J. Gong, Y. Li, Z. Hu, Y. Deng, J. Phys. Chem. C 114, 9970 (2010)CrossRefGoogle Scholar
  8. 8.
    Z.Y. Liu, M. Misra, ACS Nano 4, 2196 (2010)CrossRefGoogle Scholar
  9. 9.
    R. Dhabbe, A. Kadam, P. Korake, M. Kokate, P. Waghmare, K. Garadkar, J. Mater. Sci. 26, 554 (2015)Google Scholar
  10. 10.
    C.C. Tai, C.Y. Chie, Anal. Chem. 77, 5912 (2005)CrossRefGoogle Scholar
  11. 11.
    L.R. Zheng, Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, J.F. Zhu, Inorg. Chem. 48, 1819 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Zhou, Y. Qu, T. Zeid, X. Duan, Energy Environ. Sci. 5, 6732 (2012)CrossRefGoogle Scholar
  13. 13.
    Z. Zheng, X.X. Liu, W.P. Wang, X.J. Wang, C. Liu, Q. Xie, Z.C. Li, Z.J. Zhang, Nano Energy 11, 400 (2015)CrossRefGoogle Scholar
  14. 14.
    J.H. Bang, P.V. Kamat, Adv. Funct. Mater. 20, 1970 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Yu, Y.Z. Long, B. Sun, Z. Fan, Nanoscale 4, 2783 (2012)CrossRefGoogle Scholar
  16. 16.
    I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Nano Lett. 11, 4978 (2011)CrossRefGoogle Scholar
  17. 17.
    S.X. Dai, Y.Q. Wu, T. Sakai, Z.L. Du, H. Sakai, M. Abe, Nanoscale Res. Lett. 5, 1829 (2010)CrossRefGoogle Scholar
  18. 18.
    A.S. Susha, A.A. Lutich, C. Liu, H. Xu, R. Zhang, Y. Zhong, K.S. Wong, S. Yang, A.L. Rogach, Nanoscale 5, 1465 (2013)CrossRefGoogle Scholar
  19. 19.
    X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)CrossRefGoogle Scholar
  20. 20.
    B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)CrossRefGoogle Scholar
  21. 21.
    F. Zhu, H. Dong, Y. Wang, D.P. Wu, J.M. Li, J.L. Pan, Q. Li, X.C. Ai, J.P. Zhang, D.S. Xu, Phys. Chem. Chem. Phys. 15, 17798 (2013)CrossRefGoogle Scholar
  22. 22.
    X.M. Huang, L.L. Meng, M. Du, Y.L. Li, J. Mater. Sci. 27, 7222 (2016)Google Scholar
  23. 23.
    X. Zhang, H. Tian, X.Y. Wang, G.G. Xue, Z.P. Tian, J.Y. Zhang, S.K. Yuan, T. Yu, Z.G. Zou, Mater. Lett. 100, 51 (2013)CrossRefGoogle Scholar
  24. 24.
    Z.Y. Liu, X.T. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, J. Phys. Chem. C 112, 253 (2008)CrossRefGoogle Scholar
  25. 25.
    J.A.T. Antonio, M.A.C. Jacome, S.L.O. Cerros, E.M. Palacios, R.S. Parra, C.A. Chavez, J. Navarete, E.L. Salinas, Appl. Catal. B 100, 47 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Thennarasu, K. Rajasekar, K.B. Ameen, J. Mol. Struct. 1049, 446 (2013)CrossRefGoogle Scholar
  27. 27.
    W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, J. Am. Chem. Soc. 130, 1124 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Xishun Jiang
    • 1
  • Qibin Lin
    • 1
  • Yongchun Zhang
    • 1
  • Kexiu Dong
    • 1
  • Yangyi Zhang
    • 1
  • Yonghua Shi
    • 1
  1. 1.School of Mechanical and Electronic EngineeringChuzhou UniversityChuzhouPeople’s Republic of China

Personalised recommendations