Sol–gel synthesis and characterization of a new four-layer K0.5Gd0.5Bi4Ti4O15 Aurivillius phase

  • Sunil Kumar
  • Arun Kumar Yadav
  • Somaditya Sen


Monophasic K0.5Gd0.5Bi4Ti4O15 powders were synthesized via a citrate-based sol–gel route. Rietveld analysis of powder X-ray diffraction data confirmed the composition to be a pure four-layer Aurivillius phase with an orthorhombic structure (space group A21 am and unit cell parameters a = 5.42798(52) Å, b = 5.41821(41) Å, and c = 41.2723(33) Å) at room temperature. The chemical composition and the morphology of the sintered pellets were examined by field emission scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS). The dielectric properties were investigated as a function of temperature (27–600 °C) at various frequencies (10 Hz–1 MHz), and the phase transition was observed at 560 °C. Ferroelectric nature of K0.5Gd0.5Bi4Ti4O15 was demonstrated by the polarization–electric field (P–E) hysteresis loop. Equivalent circuit modeling of the complex impedance data was employed to determine the conduction behavior. The temperature dependence of dc conductivity was found to follow the Arrhenius law associated with the activation energy of 1.22 ± 0.02 eV and was attributed to the long-range movement of oxygen vacancies.


Oxygen Vacancy Bismuth Titanate Aurivillius Phase Paraelectric Phase Transition Ferroelectric Nature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (Sunil Kumar) is grateful to the DST for the award of research grant under INSPIRE Faculty scheme. Authors would also like to thank SIC, IIT Indore for access to FE-SEM.

Supplementary material

10854_2017_7052_MOESM1_ESM.docx (411 kb)
Supplementary material 1 (DOCX 411 KB)


  1. 1.
    J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Safari, E.K. Akdogan, Piezoelectric and Acoustic Materials for Transducer Applications. (Springer, New York, 2008)CrossRefGoogle Scholar
  3. 3.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics. (Academic Press, New York, 1971)Google Scholar
  4. 4.
    N. Setter Piezoelectric Materials and Devices, (Ceramics Laboratory, EPFL Swiss Federal Institute of Technology, Lausanne, 2005)Google Scholar
  5. 5.
    P.K. Panda, J. Mater. Sci. 44, 5049 (2009)CrossRefGoogle Scholar
  6. 6.
    B. Aurivillius, Ark. Kemi 2, 519 (1950)Google Scholar
  7. 7.
    E.C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962)CrossRefGoogle Scholar
  8. 8.
    E.C. Subbarao, J. Am. Ceram. Soc. 45, 166 (1962)CrossRefGoogle Scholar
  9. 9.
    B. Aurivillius, Ark. Kemi 1, 463 (1949)Google Scholar
  10. 10.
    B. Aurivillius, P.H. Fang, Phys. Rev 126, 893 (1962)CrossRefGoogle Scholar
  11. 11.
    C.A.P. de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374, 627 (1995)CrossRefGoogle Scholar
  12. 12.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)CrossRefGoogle Scholar
  13. 13.
    M. Reddyprakash, S.K. Rout, A. Satapathy, T.P. Sinha, S.M. Sariful, Ceram. Int. 42, 8798 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Kumar, K.B.R. Varma, Curr. Appl. Phys. 11, 203 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Kumar, K.B.R. Varma, Adv. Sci. Lett. 3, 20 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Tanwar, K. Sreenivas, V. Gupta, J. Appl. Phys. 105, 084105 (2009)CrossRefGoogle Scholar
  17. 17.
    C.-M. Wang, J.-F. Wang, S. Zhang, T.R. Shrout, J. Appl. Phys. 105, 094110 (2009)CrossRefGoogle Scholar
  18. 18.
    H.-Z. Wu, C.-M. Wang, Z.-L. Guo, T.-L. Zhao, Y.-M. Wang, Ceram. Int. 41, 5492 (2015)CrossRefGoogle Scholar
  19. 19.
    C.M. Wang, L. Zhao, J.F. Wang, S. Zhang, T.R. Shrout, Phys. Status Solidi Rapid Res. Lett. 3, 7 (2009)CrossRefGoogle Scholar
  20. 20.
    C.M. Wang, J.F. Wang, Z.G. Gai, Scr. Mater. 57, 789 (2007)CrossRefGoogle Scholar
  21. 21.
    Z.-P. Cao, C.-M. Wang, K. Lau, Q. Wang, Q.-W. Fu, H.-H. Tian, D.-F. Yin, Ceram. Int. 42, 11619 (2016)CrossRefGoogle Scholar
  22. 22.
    X. Hui, D. Peng, H. Zou, J. Li, Q. Cao, Y. Li, X. Wang, X. Yao, Ceram. Int. 40, 12477 (2014)CrossRefGoogle Scholar
  23. 23.
    S.K. Rout, E. Sinha, A. Hussian, J.S. Lee, C.W. Ahn, I.W. Kim, S.I. Woo, J. Appl. Phys. 105, 024105 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Kumar, K.B.R. Varma, Solid State Commun. 147, 457 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Kumar, K.B.R. Varma, Bull. Mater. Sci. 37, 1233 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Kumar, K.B.R. Varma, Solid State Commun. 146, 137 (2008)CrossRefGoogle Scholar
  27. 27.
    C.L. Diao, H.W. Zheng, Y.Z. Gu, W.F. Zhang, L. Fang, Ceram. Int. 40, 5765 (2014)CrossRefGoogle Scholar
  28. 28.
    C.H. Hervoches, A. Snedden, R. Riggs, S.H. Kilcoyne, P. Manuel, P. Lightfoot, J. Solid State Chem. 164, 280 (2002)CrossRefGoogle Scholar
  29. 29.
    F. Rehman, H.-B. Jin, C. Niu, A. Bukhtiar, Y.-J. Zhao, J.-B. Li, Ceram. Int. 42, 2806 (2016)CrossRefGoogle Scholar
  30. 30.
    A. Chakrabarti, J. Bera, Curr. Appl. Phys. 10, 574 (2010)CrossRefGoogle Scholar
  31. 31.
    J.D. Bobić, R.M. Katiliute, M. Ivanov, M.M. Vijatović Petrović, N.I. Ilić, A.S. Džunuzović, J. Banys, B.D. Stojanović, J. Mater. Sci. 27, 2448 (2016)Google Scholar
  32. 32.
    T. Badapanda, R. Harichandan, T. Bheesma Kumar, S. Parida, S.S. Rajput, P. Mohapatra, S. Anwar, R. Ranjan, J. Mater. Sci. 27, 7211 (2016)Google Scholar
  33. 33.
    A.R. James, Ceram. Int. 41, 5100 (2015)CrossRefGoogle Scholar
  34. 34.
    B.J. Kennedy, Q. Zhou, K. Ismunandar, Y. Kubota, K. Kato. J. Solid State Chem. 181, 1377 (2008)CrossRefGoogle Scholar
  35. 35.
    C.M. Wang, J.F. Wang, C. Mao, X. Chen, X. Dong, Z.G. Gai, M.L. Zhao, J. Am. Ceram. Soc. 91, 3094 (2008)CrossRefGoogle Scholar
  36. 36.
    S. Kumar, K.B.R. Varma, J. Phys. D 42, 075405 (2009)CrossRefGoogle Scholar
  37. 37.
    S. Kumar, S. Kundu, D.A. Ochoa, J.E. Garcia, K.B.R. Varma, Mater. Chem. Phys. 136, 680 (2012)CrossRefGoogle Scholar
  38. 38.
    C.L. Diao, H.W. Zheng, Y.G. Zhang, Z. Chen, L. Fang, Ceram. Int. 40, 13827 (2014)CrossRefGoogle Scholar
  39. 39.
    C.M. Raghavan, J.Y. Choi, S.S. Kim, Ceram. Int. 42, 9577 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Kumar, K.B.R. Varma, Mater. Sci. Eng. B 172, 177 (2010)CrossRefGoogle Scholar
  41. 41.
    J. Tellier, P. Boullay, M. Manier, D. Mercurio, J. Solid State Chem. 177, 1829 (2004)CrossRefGoogle Scholar
  42. 42.
    R.L. Withers, J.G. Thompson, A.D. Rae, J. Solid State Chem. 94, 404 (1991)CrossRefGoogle Scholar
  43. 43.
    P. Xiao, Q. Zheng, M. Tian, Y. Guo, X. Wu, C. Xu, D. Lin, RSC Adv. 6, 16387 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Kazaoui, J. Ravez, J. Mater. Sci. 28, 1211 (1993)CrossRefGoogle Scholar
  45. 45.
    I. Chilibon, J.N. Marat-Mendes, J. Sol-Gel Sci. Technol. 64, 571 (2012)CrossRefGoogle Scholar
  46. 46.
    A. Khokhar, P.K. Goyal, O.P. Thakur, K. Sreenivas, Ceram. Int. 41, 4189 (2015)CrossRefGoogle Scholar
  47. 47.
    J.R. Esquivel-Elizondo, B.B. Hinojosa, J.C. Nino, Chem. Mater. 23, 4965 (2011)CrossRefGoogle Scholar
  48. 48.
    J.L. Hutchison, J.S. Anderson, C.N.R. Rao, Proc. R. Soc. London Ser. A 355, 301(1977)CrossRefGoogle Scholar
  49. 49.
    J.L. Hutchison, D.J. Smith, Acta Crystallogr. A37, 119 (1981)CrossRefGoogle Scholar
  50. 50.
    J.A. Horn, S.C. Zhang, U. Selvaraj, G.L. Messing, S. Trolier-McKinstry. J. Am. Ceram. Soc. 82, 921 (1999)CrossRefGoogle Scholar
  51. 51.
    C.M. Wang, J.F. Wang, Z.G. Gai, M.L. Zhao, L. Zhao, J.X. Xu, N. Yin, C.J. Zhang, S.Q. Sun, G.Z. Zang, R.Q. Chu, Z.J. Xu, Mater. Chem. Phys. 110, 402 (2008)CrossRefGoogle Scholar
  52. 52.
    D.Y. Suárez, I.M. Reaney, W.E. Lee, J. Mater. Res. 16, 3139 (2001)CrossRefGoogle Scholar
  53. 53.
    V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)CrossRefGoogle Scholar
  54. 54.
    R.D. Shannon, Acta Crystallogr. 32, 751 (1976)CrossRefGoogle Scholar
  55. 55.
    J.F. Scott, J. Phys. C. 20, 252203 (2008)Google Scholar
  56. 56.
    A. Kumar, V.V. Bhanu Prasad, K.C. James Raju, A.R. James, J. Mater. Sci. 26, 3757 (2015)Google Scholar
  57. 57.
    L. Jin, F. Li, S. Zhang, J. Am. Ceram. Soc. 97, 1 (2014)CrossRefGoogle Scholar
  58. 58.
    S. Arrhenius, Z. Phys. Chem. 4, 96 (1889)Google Scholar
  59. 59.
    W. Bai, G. Chen, J.Y. Zhu, J. Yang, T. Lin, X.J. Meng, X.D. Tang, C.G. Duan, J.H. Chu, Appl. Phys. Lett. 100, 082902 (2012)CrossRefGoogle Scholar
  60. 60.
    H.S. Shulman, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 83, 528 (2000)CrossRefGoogle Scholar
  61. 61.
    Z.Y. Wang, T.G. Chen, Phys. Status Solidi A 167, R3 (1998)CrossRefGoogle Scholar
  62. 62.
    F. Rehman, H.-B. Jin, J.-B. Li, RSC Adv. 6, 35102 (2016)CrossRefGoogle Scholar
  63. 63.
    F.A. Kröger, H.J. Vink, Solid State Phys. 3, 307 (1956)CrossRefGoogle Scholar
  64. 64.
    H. Ihrig, D. Hennings, Phys. Rev. B 17, 4593 (1978)CrossRefGoogle Scholar
  65. 65.
    C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology IndoreIndoreIndia
  2. 2.Discipline of PhysicsIndian Institute of TechnologyIndoreIndia

Personalised recommendations