Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications
- 373 Downloads
- 2 Citations
Abstract
We investigated the structure, dielectric properties and energy density performances of cubic perovskite-structured Mg-doped SrTiO3 ceramics that were prepared by the solid-state reaction method. SrTiO3 ceramic exhibited a relatively stable permittivity about 265–290 and enhanced dielectric breakdown strength (DBS) by Mg isovalent doping. Doping effects on the energy-storage properties in SrTiO3 ceramics was performed by complex impedance analysis and polarization–electric field hysteresis loops. The energy storage density was dependent on DBS while energy efficiency was closely related to the remnant polarization. The possible physical mechanisms, including grain, gain boundary and interfacial polarization effects, were discussed to explain the improvement of dielectric breakdown strength. The bulk Mg-doped SrTiO3 materials have shown interesting energy densities (1.86 J/cm3) with good energy storage efficiency (about 89.3%) indicating that they can be a promising candidate for high energy density capacitor applications.
Keywords
Interfacial Polarization Remnant Polarization Breakdown Strength Hysteresis Loss Energy Storage DensityNotes
Acknowledgements
This work was supported by NSFC-Guangdong Joint Funds of the Natural Science Foundation of China (No. U1601209), the National Key Basic Research Program of China (973 Program) (No. 2015CB654601), and the China Scholarship Council.
References
- 1.I. Burn, D.M. Smyth, J. Mater. Sci. 7, 339 (1972)CrossRefGoogle Scholar
- 2.G.R. Love, J. Am. Ceram. Soc. 73, 323 (1990)CrossRefGoogle Scholar
- 3.N. Ortega, A. Kumar, J.F. Scott, B.C. Douglas, M. Tomazawa, K. Shalini, D.G.B. Diestra, R.S. Katiyar, J. Phys. Condens. Matter. 24, 445901 (2012)CrossRefGoogle Scholar
- 4.D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, J. Am. Ceram. Soc. 95, 1348 (2012)CrossRefGoogle Scholar
- 5.R. Su, Z. Luo, D. Zhang, Y. Liu, Z. Wang, J. Li, J. Bian, Y. Li, X. Hu, J. Gao, Y. Yang, J. Phys. Chem. C 120, 11769 (2016)CrossRefGoogle Scholar
- 6.Z.H. Wu, H.X. Liu, M.H. Cao, Z.Y. Shen, Z.H. Yao, H. Hao, D.B. Luo, J. Ceram. Soc. Jpn. 116, 345 (2008)CrossRefGoogle Scholar
- 7.X.H. Hao, J. Adv. Dielectr. 3, 1330001 (2013)CrossRefGoogle Scholar
- 8.J.B. Lim, S.J. Zhang, N. Kim, T.R. Shrout, J. Am. Ceram. Soc. 92, 679 (2009)CrossRefGoogle Scholar
- 9.N.H. Fletcher, A.D. Hilton, B.W. Ricketts, J. Phys. D. Appl. Phys. 29, 253 (1996)CrossRefGoogle Scholar
- 10.X. Su, B.C. Riggs, M. Tomozawa, J.K. Nelsonc, D.B. Chrisey, J. Mater. Chem. A 2, 18087 (2014)CrossRefGoogle Scholar
- 11.A.K. Yadav, C. Gautam, J. Mater. Sci. Mater. Electron 25, 5165 (2014)CrossRefGoogle Scholar
- 12.T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, J. Am. Ceram. Soc. 96, 2699 (2013)CrossRefGoogle Scholar
- 13.H. Ogihara, C.A. Randall, S.T. McKinstry, J. Am. Ceram. Soc. 92, 1719 (2009)CrossRefGoogle Scholar
- 14.Y. Li, Y. Yang, R. Viswan, J. Li, D. Viehland, Appl. Phys. Lett. 101, 022905 (2012)CrossRefGoogle Scholar
- 15.Z. Shen, X. Wang, B. Luo, L. Li, J. Mater. Chem. A 3, 18146 (2015)CrossRefGoogle Scholar
- 16.Y. Yan, C. Ning, Z. Jin, H. Qin, W. Luo, G. Liu, J. Alloys Compd. 646, 748 (2015)CrossRefGoogle Scholar
- 17.M.S. Mirshekarloo, K. Yao, T. Sritharan, Appl. Phys. Lett. 97, 142902 (2010)CrossRefGoogle Scholar
- 18.V. Gaurav, V. Rahul, B. Chris, Int. J. Appl. Ceram. Technol. 12, E1 (2015)Google Scholar
- 19.T. Wang, L. Jin, C. Li, Q. Hu, X.Y. Wei, J. Am. Ceram. Soc. 98, 559 (2015)CrossRefGoogle Scholar
- 20.B. Liu, X.H. Wang, Q. Zhao, L.T. Li, J. Am. Ceram. Soc. 98, 2641 (2015)CrossRefGoogle Scholar
- 21.H.G. Wisken, F. Podeyn, H.G. Weise, IEEE Trans. Magn. 37, 332 (2001)CrossRefGoogle Scholar
- 22.Y. Wang, X. Hao, J. Yang, J. Xu, D. Zhao, J. Appl. Phys. 112, 034105 (2012)CrossRefGoogle Scholar
- 23.J. Parui, S.B. Krupanidhi, Appl. Phys. Lett. 92, 192901 (2008)CrossRefGoogle Scholar
- 24.V.S. Puli, D.K. Pradhan, B.C. Riggs, D.B. Chrisey, R.S. Katiyar, J. Alloys Compd. 584, 369 (2014)CrossRefGoogle Scholar
- 25.Y. Li, Z. Wang, J. Yao, T. Yang, Z. Wang, J. Hu, C. Chen, R. Sun, Z. Tian, J. Li, L.Q. Chen, D. Viehland, Nat. Commun. 6, 6680 (2015)CrossRefGoogle Scholar
- 26.B.H. Ma, D.K. Kwon, M. Narayanan, U.B. Balachandran, J. Mater. Res. 24, 2993 (2009)CrossRefGoogle Scholar
- 27.S. Liu, J.W. Zhai, J. Mater. Chem. A 3, 1511 (2015)CrossRefGoogle Scholar
- 28.J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Nature 430, 758 (2004)CrossRefGoogle Scholar
- 29.P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, J.F. Scott, Phys. Rev. Lett. 99, 167601 (2007)CrossRefGoogle Scholar
- 30.A. Vasudevarao, S. Denev, M.D. Biegalski, Y. Li, L.Q. Chen, S. Trolier-McKinstry, D.G. Schlom, V. Gopalan, Appl. Phys. Lett. 92, 192902 (2008)CrossRefGoogle Scholar
- 31.G. Zhang, H. Liu, Z. Yao, M. Cao, H. Hao, J. Mater. Sci. Mater. Electron. 26, 2726 (2015)CrossRefGoogle Scholar
- 32.Z.Y. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, X.Y. Gu, R.H. Liao, J. Mater. Sci. Mater. Electron. 24, 704 (2013)CrossRefGoogle Scholar
- 33.T. Wang, L. Jin, L. Shu, Q. Hu, X. Wei, J. Alloys Compd. 617, 399 (2014)CrossRefGoogle Scholar
- 34.Z.J. Wang, M.H. Cao, Z.H. Yao, G.Y. Li, Z. Song, W. Hu, H. Hao, H.X. Liu, Z.Y. Yu, Ceram. Int. 40, 929 (2014)CrossRefGoogle Scholar
- 35.W. Cai, C.L. Fu, J.C. Gao, C.X. Zhao, Adv. Appl. Ceram. 110, 181 (2011)CrossRefGoogle Scholar
- 36.J.Y. Chen, C.L. Huang, Mater. Lett. 64, 2585 (2010)CrossRefGoogle Scholar
- 37.M. Tuhkala, J. Juuti, H. Jantunen, J. Appl. Phys. 115, 184101 (2014)CrossRefGoogle Scholar
- 38.C. Ang, A.S. Bhalla, R. Guo, L.E. Cross, Appl. Phys. Lett. 76, 1929 (2000)CrossRefGoogle Scholar
- 39.C. Ang, L.E. Cross, Z. Yu, R. Guo, A.S. Bhalla, J.H. Hao, Appl. Phys. Lett. 78, 2754 (2001)CrossRefGoogle Scholar
- 40.G. Liu, S. Zhang, W. Jiang, W. Cao, Mater. Sci. Eng. R 89, 1 (2015)CrossRefGoogle Scholar
- 41.Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, H. Liu, Ceram. Int. 40, 14127 (2014)CrossRefGoogle Scholar
- 42.H. Tang, H.A. Sodano, Nano. Lett. 13, 1373 (2013)CrossRefGoogle Scholar
- 43.H. Tang, Y. Lin, H.A. Sodano, Adv. Energy Mater. 3, 451 (2013)CrossRefGoogle Scholar
- 44.H. Tang, H.A. Sodano, Appl. Phys. Lett. 102, 063901 (2013)CrossRefGoogle Scholar
- 45.J. Huang, Y. Zhang, T. Ma, H. Li, L. Zhang, Appl. Phys. Lett. 96, 042902 (2010)CrossRefGoogle Scholar
- 46.S. Xue, S. Liu, W. Zhang, B. Shen, J. Zhai, Appl. Phys. Lett. 106, 162903 (2015)CrossRefGoogle Scholar
- 47.H. Nie, N. Feng, X. Chen, G. Wang, X. Dong, Y. Gu, H. He, Y. Liu, J. Am. Ceram. Soc. 93, 642 (2010)CrossRefGoogle Scholar
- 48.Z. Song, H. Liu, H. Hao, S. Zhang, M. Cao, Z. Yao, Z. Wang, W. Hu, Y. Shi, B. Hu, IEEE Trans. Ultrason. Ferroelectr. FrEq. Contr. 62, 609 (2015)CrossRefGoogle Scholar
- 49.H.Y. Lee, K.H. Cho, H.D. Nam, Ferroelectrics 334, 165 (2006)CrossRefGoogle Scholar
- 50.J.C.C. Abrantes, A. Feighery, A.A.L. Ferreira, J.A. Labrincha, J.R. Frade, J. Am. Ceram. Soc. 85, 2745 (2002)CrossRefGoogle Scholar
- 51.J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)CrossRefGoogle Scholar
- 52.C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)CrossRefGoogle Scholar
- 53.Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Royba, M. Joler, in Proceedings 14th IEEE International Pulsed Power Conference 719 (2003)Google Scholar
- 54.Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, Z. Yu, J. Eur. Ceram. Soc. 34, 1209 (2014)CrossRefGoogle Scholar
- 55.M. Vollmann, R. Waser, J. Electroceram 1, 51 (1997)CrossRefGoogle Scholar
- 56.M. Vollmann, R. Hagenbeck, R. Waser, J. Am. Ceram. Soc. 80, 2301 (1997)CrossRefGoogle Scholar