Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications

  • Zhonghua YaoEmail author
  • Qu Luo
  • Guifang Zhang
  • Hua Hao
  • Minghe Cao
  • Hanxing LiuEmail author


We investigated the structure, dielectric properties and energy density performances of cubic perovskite-structured Mg-doped SrTiO3 ceramics that were prepared by the solid-state reaction method. SrTiO3 ceramic exhibited a relatively stable permittivity about 265–290 and enhanced dielectric breakdown strength (DBS) by Mg isovalent doping. Doping effects on the energy-storage properties in SrTiO3 ceramics was performed by complex impedance analysis and polarization–electric field hysteresis loops. The energy storage density was dependent on DBS while energy efficiency was closely related to the remnant polarization. The possible physical mechanisms, including grain, gain boundary and interfacial polarization effects, were discussed to explain the improvement of dielectric breakdown strength. The bulk Mg-doped SrTiO3 materials have shown interesting energy densities (1.86 J/cm3) with good energy storage efficiency (about 89.3%) indicating that they can be a promising candidate for high energy density capacitor applications.


Interfacial Polarization Remnant Polarization Breakdown Strength Hysteresis Loss Energy Storage Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NSFC-Guangdong Joint Funds of the Natural Science Foundation of China (No. U1601209), the National Key Basic Research Program of China (973 Program) (No. 2015CB654601), and the China Scholarship Council.


  1. 1.
    I. Burn, D.M. Smyth, J. Mater. Sci. 7, 339 (1972)CrossRefGoogle Scholar
  2. 2.
    G.R. Love, J. Am. Ceram. Soc. 73, 323 (1990)CrossRefGoogle Scholar
  3. 3.
    N. Ortega, A. Kumar, J.F. Scott, B.C. Douglas, M. Tomazawa, K. Shalini, D.G.B. Diestra, R.S. Katiyar, J. Phys. Condens. Matter. 24, 445901 (2012)CrossRefGoogle Scholar
  4. 4.
    D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, J. Am. Ceram. Soc. 95, 1348 (2012)CrossRefGoogle Scholar
  5. 5.
    R. Su, Z. Luo, D. Zhang, Y. Liu, Z. Wang, J. Li, J. Bian, Y. Li, X. Hu, J. Gao, Y. Yang, J. Phys. Chem. C 120, 11769 (2016)CrossRefGoogle Scholar
  6. 6.
    Z.H. Wu, H.X. Liu, M.H. Cao, Z.Y. Shen, Z.H. Yao, H. Hao, D.B. Luo, J. Ceram. Soc. Jpn. 116, 345 (2008)CrossRefGoogle Scholar
  7. 7.
    X.H. Hao, J. Adv. Dielectr. 3, 1330001 (2013)CrossRefGoogle Scholar
  8. 8.
    J.B. Lim, S.J. Zhang, N. Kim, T.R. Shrout, J. Am. Ceram. Soc. 92, 679 (2009)CrossRefGoogle Scholar
  9. 9.
    N.H. Fletcher, A.D. Hilton, B.W. Ricketts, J. Phys. D. Appl. Phys. 29, 253 (1996)CrossRefGoogle Scholar
  10. 10.
    X. Su, B.C. Riggs, M. Tomozawa, J.K. Nelsonc, D.B. Chrisey, J. Mater. Chem. A 2, 18087 (2014)CrossRefGoogle Scholar
  11. 11.
    A.K. Yadav, C. Gautam, J. Mater. Sci. Mater. Electron 25, 5165 (2014)CrossRefGoogle Scholar
  12. 12.
    T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, J. Am. Ceram. Soc. 96, 2699 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Ogihara, C.A. Randall, S.T. McKinstry, J. Am. Ceram. Soc. 92, 1719 (2009)CrossRefGoogle Scholar
  14. 14.
    Y. Li, Y. Yang, R. Viswan, J. Li, D. Viehland, Appl. Phys. Lett. 101, 022905 (2012)CrossRefGoogle Scholar
  15. 15.
    Z. Shen, X. Wang, B. Luo, L. Li, J. Mater. Chem. A 3, 18146 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Yan, C. Ning, Z. Jin, H. Qin, W. Luo, G. Liu, J. Alloys Compd. 646, 748 (2015)CrossRefGoogle Scholar
  17. 17.
    M.S. Mirshekarloo, K. Yao, T. Sritharan, Appl. Phys. Lett. 97, 142902 (2010)CrossRefGoogle Scholar
  18. 18.
    V. Gaurav, V. Rahul, B. Chris, Int. J. Appl. Ceram. Technol. 12, E1 (2015)Google Scholar
  19. 19.
    T. Wang, L. Jin, C. Li, Q. Hu, X.Y. Wei, J. Am. Ceram. Soc. 98, 559 (2015)CrossRefGoogle Scholar
  20. 20.
    B. Liu, X.H. Wang, Q. Zhao, L.T. Li, J. Am. Ceram. Soc. 98, 2641 (2015)CrossRefGoogle Scholar
  21. 21.
    H.G. Wisken, F. Podeyn, H.G. Weise, IEEE Trans. Magn. 37, 332 (2001)CrossRefGoogle Scholar
  22. 22.
    Y. Wang, X. Hao, J. Yang, J. Xu, D. Zhao, J. Appl. Phys. 112, 034105 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Parui, S.B. Krupanidhi, Appl. Phys. Lett. 92, 192901 (2008)CrossRefGoogle Scholar
  24. 24.
    V.S. Puli, D.K. Pradhan, B.C. Riggs, D.B. Chrisey, R.S. Katiyar, J. Alloys Compd. 584, 369 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Li, Z. Wang, J. Yao, T. Yang, Z. Wang, J. Hu, C. Chen, R. Sun, Z. Tian, J. Li, L.Q. Chen, D. Viehland, Nat. Commun. 6, 6680 (2015)CrossRefGoogle Scholar
  26. 26.
    B.H. Ma, D.K. Kwon, M. Narayanan, U.B. Balachandran, J. Mater. Res. 24, 2993 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Liu, J.W. Zhai, J. Mater. Chem. A 3, 1511 (2015)CrossRefGoogle Scholar
  28. 28.
    J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Nature 430, 758 (2004)CrossRefGoogle Scholar
  29. 29.
    P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, J.F. Scott, Phys. Rev. Lett. 99, 167601 (2007)CrossRefGoogle Scholar
  30. 30.
    A. Vasudevarao, S. Denev, M.D. Biegalski, Y. Li, L.Q. Chen, S. Trolier-McKinstry, D.G. Schlom, V. Gopalan, Appl. Phys. Lett. 92, 192902 (2008)CrossRefGoogle Scholar
  31. 31.
    G. Zhang, H. Liu, Z. Yao, M. Cao, H. Hao, J. Mater. Sci. Mater. Electron. 26, 2726 (2015)CrossRefGoogle Scholar
  32. 32.
    Z.Y. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, X.Y. Gu, R.H. Liao, J. Mater. Sci. Mater. Electron. 24, 704 (2013)CrossRefGoogle Scholar
  33. 33.
    T. Wang, L. Jin, L. Shu, Q. Hu, X. Wei, J. Alloys Compd. 617, 399 (2014)CrossRefGoogle Scholar
  34. 34.
    Z.J. Wang, M.H. Cao, Z.H. Yao, G.Y. Li, Z. Song, W. Hu, H. Hao, H.X. Liu, Z.Y. Yu, Ceram. Int. 40, 929 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Cai, C.L. Fu, J.C. Gao, C.X. Zhao, Adv. Appl. Ceram. 110, 181 (2011)CrossRefGoogle Scholar
  36. 36.
    J.Y. Chen, C.L. Huang, Mater. Lett. 64, 2585 (2010)CrossRefGoogle Scholar
  37. 37.
    M. Tuhkala, J. Juuti, H. Jantunen, J. Appl. Phys. 115, 184101 (2014)CrossRefGoogle Scholar
  38. 38.
    C. Ang, A.S. Bhalla, R. Guo, L.E. Cross, Appl. Phys. Lett. 76, 1929 (2000)CrossRefGoogle Scholar
  39. 39.
    C. Ang, L.E. Cross, Z. Yu, R. Guo, A.S. Bhalla, J.H. Hao, Appl. Phys. Lett. 78, 2754 (2001)CrossRefGoogle Scholar
  40. 40.
    G. Liu, S. Zhang, W. Jiang, W. Cao, Mater. Sci. Eng. R 89, 1 (2015)CrossRefGoogle Scholar
  41. 41.
    Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, H. Liu, Ceram. Int. 40, 14127 (2014)CrossRefGoogle Scholar
  42. 42.
    H. Tang, H.A. Sodano, Nano. Lett. 13, 1373 (2013)CrossRefGoogle Scholar
  43. 43.
    H. Tang, Y. Lin, H.A. Sodano, Adv. Energy Mater. 3, 451 (2013)CrossRefGoogle Scholar
  44. 44.
    H. Tang, H.A. Sodano, Appl. Phys. Lett. 102, 063901 (2013)CrossRefGoogle Scholar
  45. 45.
    J. Huang, Y. Zhang, T. Ma, H. Li, L. Zhang, Appl. Phys. Lett. 96, 042902 (2010)CrossRefGoogle Scholar
  46. 46.
    S. Xue, S. Liu, W. Zhang, B. Shen, J. Zhai, Appl. Phys. Lett. 106, 162903 (2015)CrossRefGoogle Scholar
  47. 47.
    H. Nie, N. Feng, X. Chen, G. Wang, X. Dong, Y. Gu, H. He, Y. Liu, J. Am. Ceram. Soc. 93, 642 (2010)CrossRefGoogle Scholar
  48. 48.
    Z. Song, H. Liu, H. Hao, S. Zhang, M. Cao, Z. Yao, Z. Wang, W. Hu, Y. Shi, B. Hu, IEEE Trans. Ultrason. Ferroelectr. FrEq. Contr. 62, 609 (2015)CrossRefGoogle Scholar
  49. 49.
    H.Y. Lee, K.H. Cho, H.D. Nam, Ferroelectrics 334, 165 (2006)CrossRefGoogle Scholar
  50. 50.
    J.C.C. Abrantes, A. Feighery, A.A.L. Ferreira, J.A. Labrincha, J.R. Frade, J. Am. Ceram. Soc. 85, 2745 (2002)CrossRefGoogle Scholar
  51. 51.
    J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)CrossRefGoogle Scholar
  52. 52.
    C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)CrossRefGoogle Scholar
  53. 53.
    Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Royba, M. Joler, in Proceedings 14th IEEE International Pulsed Power Conference 719 (2003)Google Scholar
  54. 54.
    Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, Z. Yu, J. Eur. Ceram. Soc. 34, 1209 (2014)CrossRefGoogle Scholar
  55. 55.
    M. Vollmann, R. Waser, J. Electroceram 1, 51 (1997)CrossRefGoogle Scholar
  56. 56.
    M. Vollmann, R. Hagenbeck, R. Waser, J. Am. Ceram. Soc. 80, 2301 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  2. 2.Materials Research InstituteThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations