Optical band gap tuning of Ag doped Ge2Sb2Te5 thin films

  • Palwinder Singh
  • Ramandeep Kaur
  • Pankaj Sharma
  • Vineet Sharma
  • Monu Mishra
  • Govind Gupta
  • Anup Thakur


Thin films of (Ge2Sb2Te5)100−xAgx (x = 0, 1, 3, 5 and 10) were deposited using thermal evaporation technique. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy was used to confirm the amorphous nature, uniformity and chemical compositions of deposited films respectively. Transmission spectra divulged the highly transparent nature of films in near infra red region. The average transmission in near infra red region and optical band gap (estimated by Tauc’s plot) was increased with Ag doping upto x = 3 while it decreased for higher values of x. The increase in transmission and optical band gap was attributed to the reduction in density of localized states and vacancies. However, the decrease in the transmission and optical band gap is due to the increase in distortion of the host Ge2Sb2Te5 lattice because Ag is doped at the expense of Ge, Sb and Te. The increased optical band gap could be utilized to reduce threshold current which enhances switching speed in phase change materials.


Phase Change Material Chalcogenide Glass Sb2Te3 Urbach Energy Mobility Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by Department of Science and Technology, New Delhi under Research Project (Sanction No. SB/FTP/PS-075/2013 dated 29/05/2014). PS is thankful to Department of Science and Technology, New Delhi for providing financial support as SRF under above mentioned Research Project.


  1. 1.
    R.P. Tripathi, M.S. Akhtar, M.A. Alvi, S.A. Khan, J. Mater. Sci. 27, 8227–8233 (2016)Google Scholar
  2. 2.
    B. Zheng, Y. Sun, J. Wu, L. Yuan, X. Wu, K. Huang, S. Feng, J. Nanopart. Res. 19, 50 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Raoux, W. Welnic, D. Ielmini D, Chem. Rev. 110, 240–267 (2010)CrossRefGoogle Scholar
  4. 4.
    H.C. Lee, J.H. Jeong, D. Choi, Semicond. Sci. Technol. 31, 095006 (2016)CrossRefGoogle Scholar
  5. 5.
    J.E. Boschker, M. Boniardi, A. Redaelli, H. Riechert, R. Calarco, Appl. Phys. Lett. 106, 023117 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Wuttig, N. Yamada, Nat. Mater. 6, 824–832 (2007)CrossRefGoogle Scholar
  7. 7.
    I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, J. Appl. Phys. 87, 4130 (2000)CrossRefGoogle Scholar
  8. 8.
    R. Bez, A. Pirovano, Mat. Sci. Semicon. Proc. 7, 349–355 (2004)CrossRefGoogle Scholar
  9. 9.
    E.M. Vinod, K. Ramesh, K.S. Sangunni, Sci. Rep. 5, 8050 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Fu, X. Shen, Q. Nie, G. Wang, L. Wu, S. Dai, T. Xu, R.P. Wang, Appl. Surf. Sci. 264, 269–272 (2013)CrossRefGoogle Scholar
  11. 11.
    Q. Wang, B. Liu, Y. Xia, Y. Zheng, R. Huo, Q. Zhang, S. Song, Y. Cheng, Z. Song, S. Feng, Appl. Phys. Lett. 107, 222101 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Zhu, Z. Zhang, S. Song, H. Xie, Z. Song, X. Li, L. Shen, L. Li, L. Wu, B. Liu, Mater. Res. Bull 64, 333–336 (2015)CrossRefGoogle Scholar
  13. 13.
    E.M. Vinod, K. Ramesh, R. Ganesan, K.S. Sangunni, Appl. Phys. Lett. 104, 063505 (2014)CrossRefGoogle Scholar
  14. 14.
    K.H. Song, S.W. Kim, J.H. Seo, H.Y. Lee, J. Appl. Phys. 104, 103516 (2008)CrossRefGoogle Scholar
  15. 15.
    B. Prasai, G. Chen, D.A. Drabold, Appl. Phys. Lett. 102, 041907 (2013)CrossRefGoogle Scholar
  16. 16.
    P. Singh, P. Sharma, V. Sharma, A. Thakur, Semicond. Sci. Technol. 32, 045015 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Guo, X.J. Ding, J.Z. Zhang, Z.G. Hu, X.L. Ji, L.C. Wu, Z.T. Song, J.H. Chu, Appl. Phys. Lett. 106, 052105 (2015)CrossRefGoogle Scholar
  18. 18.
    D. Ielmini, Y.G. Zhang, J. Appl. Phys. 102, 054517 (2007)CrossRefGoogle Scholar
  19. 19.
    A. Thakur, V. Sharma, P.S. Chandel, N. Goyal, G.S.S. Saini, J. Mater. Sci. 41, 2327–2332 (2006)CrossRefGoogle Scholar
  20. 20.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bombea, Handbook of X-ray Photoelectron Spectroscopy, ed. by J. Chastain, (Perkin-Elmer Corporation, USA, 1992)Google Scholar
  21. 21.
    A. Thakur, H. Yoo, S.J. Kang, J.Y. Baik, I.J. Lee, H.K. Lee, K. Kim, B. Kim, S. Jung, J. Park, H.J. Shin, ECS J. Solid State Sci. Technol. 1(1), Q11–Q15 (2012).CrossRefGoogle Scholar
  22. 22.
    J. Tauc, The Optical Properties of Solids. (North-Holland, Amsterdam, 1970)Google Scholar
  23. 23.
    B.S. Lee, J.R. Abelson, S.G. Bishop, D.H. Kang, B.K. Cheong, K.B. Kim, J. Appl. Phys. 97, 093509 (2005)CrossRefGoogle Scholar
  24. 24.
    H.Y. Lee, J.W. Kim, H.B. Chung, J. Non-Cryst. Solids 315, 288–296 (2003)CrossRefGoogle Scholar
  25. 25.
    F. Urbach, Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  26. 26.
    M.H. Cohen, H. Fritzsche, S.R. Ovshinsky, Phys. Rev. Lett. 22, 1065 (1969)CrossRefGoogle Scholar
  27. 27.
    N.F. Mott, E.A. Davis, R.A. Street, Philos. Mag. 32(5), 961–996 (1975)CrossRefGoogle Scholar
  28. 28.
    E.A. Davis, N.F. Mott, Philos. Mag. 22, 903–922 (1970)CrossRefGoogle Scholar
  29. 29.
    N.F. Mott, Philos. Mag. 24, 935–958 (1971)CrossRefGoogle Scholar
  30. 30.
    D. Krebs, T. Bachmann, P. Jonnalagadda, L. Dellmann, S. Raoux, New J. Phys. 16, 043015 (2014)CrossRefGoogle Scholar
  31. 31.
    R. Kaur, P. Singh, K. Singh, A. Kumar, A. Thakur, Superlattices Microstruct. 98, 187–193 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Kumar, D. Singh, R. Thangraj, Thin Solid Films 540, 271–276 (2013)CrossRefGoogle Scholar
  33. 33.
    I. Chaudhuri, F. Inam, D.A. Drabold, Phys. Rev. B 79, 100201(R) (2009)CrossRefGoogle Scholar
  34. 34.
    W. Welnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blugel, M. Wuttig, Nat. Mater. 5, 56–62 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Palwinder Singh
    • 1
    • 2
  • Ramandeep Kaur
    • 1
    • 2
  • Pankaj Sharma
    • 3
  • Vineet Sharma
    • 3
  • Monu Mishra
    • 4
  • Govind Gupta
    • 4
  • Anup Thakur
    • 2
  1. 1.Department of PhysicsPunjabi UniversityPatialaIndia
  2. 2.Advanced Materials Research Lab, Department of Basic and Applied SciencesPunjabi UniversityPatialaIndia
  3. 3.Department of Physics and Materials ScienceJaypee University of Information TechnologySolanIndia
  4. 4.CSIR-National Physical LaboratoryAdvanced Materials and Devices DivisionNew DelhiIndia

Personalised recommendations