Advertisement

Rapid and eco-friendly synthesis of NiO/ZnO nanocomposite and its application in decolorization of dye

  • Mohammad Hassanpour
  • Hossein Safardoust-Hojaghan
  • Masoud Salavati-NiasariEmail author
Article

Abstract

In this work NiO/ZnO nanocomposite was synthesized via simple, rapid and eco-friendly microwave-assisted method. Prepared NiO/ZnO nanocomposite was characterized by X-ray diffraction pattern, scanning electron microscopy, transmission electron microscopy, UV–Visible absorption spectroscopy and Fourier transform infrared spectroscopy. Vibrating sample magnetometer analysis showed the ferromagnetic behavior of nanocomposite. In the following, prepared nanocomposite was used for photodegradation of methylene blue and rhodamin B under ultraviolet light irradiation. The results showed that nanocomposite has excellent photocatalyst performance.

Keywords

Photocatalytic Activity Co3O4 Photocatalytic Degradation Methylene Blue Ferromagnetic Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No. (159271/879).

References

  1. 1.
    J. Huang, A.C. Marschilok, E.S. Takeuchi, K.J. Takeuchi, Microwave-assisted synthesis of silver vanadium phosphorus oxide, Ag2VO2PO4: crystallite size control and impact on electrochemistry. Chem. Mater. 28(7), 2191–2199 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Khaghani, B. Ghanbari, Microwave synthesis of Fe2 O3 and ZnO nanoparticles and evaluation its application on grain iron and zinc concentrations of wheat (Triticum aestivum L.) and their relationships to grain yield. J. Nanostruct. 6(2), 149–155 (2016)Google Scholar
  3. 3.
    W.W. Wang, Y.J. Zhu, G.F. Cheng, Y.H. Huang, Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers. Mater. Lett. 60(5), 609–612 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5(6), 2188–2196 (2013)CrossRefGoogle Scholar
  5. 5.
    L.-H. Ai, J. Jiang, Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method. Powder Technol. 195(1), 11–14 (2009)CrossRefGoogle Scholar
  6. 6.
    W.-W. Wang, Y.-J. Zhu, Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorg. Chem. Commun. 7(9), 1003–1005 (2004)CrossRefGoogle Scholar
  7. 7.
    W. Staszak, M. Zawadzki, J. Okal, Solvothermal synthesis and characterization of nanosized zinc aluminate spinel used in iso-butane combustion. J. Alloys compd. 492(1), 500–507 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Phuruangrat, T. Thongtem, S. Thongtem, Barium molybdate and barium tungstate nanocrystals synthesized by a cyclic microwave irradiation. J. Phys. Chem. Solids 70(6), 955–959 (2009)CrossRefGoogle Scholar
  9. 9.
    D.W. Wang, F. Li, H.M. Cheng, Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J. Power Sources 185(2), 1563–1568 (2008)CrossRefGoogle Scholar
  10. 10.
    Y. Ichiyanagi, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima, Eriko Komatsu, H. Tajima, Magnetic properties of NiO nanoparticles. Physica B 329, 862–863 (2003)CrossRefGoogle Scholar
  11. 11.
    M.L. Curri, A. Agostiano, F. Mavelli, M. Della Monica, Reverse micellar systems: self organised assembly as effective route for the synthesis of colloidal semiconductor nanocrystals. Mater. Sci. Eng. 22(2), 423–426 (2002)CrossRefGoogle Scholar
  12. 12.
    M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J.I. Itoh, M. Okada, T. Mouri, Preparation of Li y Mnx Ni1–x O2 as a cathode for lithium-ion batteries. J. Power Sources 74(1), 46–53 (1998)CrossRefGoogle Scholar
  13. 13.
    H.X. Yang, Q.F. Dong, X.H. Hu, X.P. Ai, S.X. Li, Preparation and characterization of LiNiO2 synthesized from Ni (OH)2 and LiOH · H2O. J. Power Sources 79(2), 256–261 (1999)CrossRefGoogle Scholar
  14. 14.
    E.L. Miller, R.E. Rocheleau, Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electrochem. Soc. 144(9), 3072–3077 (1997)CrossRefGoogle Scholar
  15. 15.
    Z.-S. Wang, C.-H. Huang, Y.-Y. Huang, Y.-J. Hou, P.-H. Xie, B.-W. Zhang, H.-M. Cheng, A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem. Mater. 13(2), 678–682 (2001)CrossRefGoogle Scholar
  16. 16.
    J. Xu, Q. Pan, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuators B 66(1), 277–279 (2000)CrossRefGoogle Scholar
  17. 17.
    T. Richard, D.A. Berry, T.H. Gardner, A. Miltz, Evaluation of zinc oxide sorbents in a pilot-scale transport reactor: sulfidation kinetics and reactor modeling. Ind. Eng. Chem. Res. 43(5), 1235–1243 (2004)CrossRefGoogle Scholar
  18. 18.
    G.M. Hamminga, G. Mul, J.A. Moulijn, Real-time in situ ATR-FTIR analysis of the liquid phase hydrogenation of γ-butyrolactone over Cu-ZnO catalysts: a mechanistic study by varying lactone ring size. Chem. Eng. Sci. 59(22) 5479–5485 (2004)CrossRefGoogle Scholar
  19. 19.
    M.L. Curri, R. Comparelli, P.D. Cozzoli, G. Mascolo, A. Agostiano, Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye. Mater. Sci. Eng. 23(1) 285–289 (2003)CrossRefGoogle Scholar
  20. 20.
    A.A. Kovalenko, A.N. Baranov, G.N. Panin, Synthesis of ZnO/NiO nanocomposites from ethanol solutions. Russ. J. Inorg. Chem. 53(10), 1546–1551 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Hameed,, T. Montini, V. Gombac, P. Fornasiero, Photocatalytic decolourization of dyes on NiO–ZnO nano-composites. Photochem. Photobiol. Sci. 8(5), 677–682 (2009)CrossRefGoogle Scholar
  22. 22.
    A.H. Jawad, N.S.A. Mubarak, M.A.M. Ishak, K. Ismail, W.I. Nawawi, Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film. J. Taibah Univ. Sci. 10, 352–362 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mohammad Hassanpour
    • 1
  • Hossein Safardoust-Hojaghan
    • 1
  • Masoud Salavati-Niasari
    • 1
    Email author
  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations