Green synthesis using tragacanth gum and characterization of Ni–Cu–Zn ferrite nanoparticles as a magnetically separable photocatalyst for organic dyes degradation from aqueous solution under visible light

  • Saeid Taghavi Fardood
  • Kobra Atrak
  • Ali Ramazani


In this paper, Ni–Cu–Zn ferrite nanoparticle was synthesized using tragacanth gum as a biotemplate source by the sol–gel method and its photocatalytic dye degradation ability from aqueous solution was studied. This method has many advantages such as nontoxic, economic viability, ease to scale up, less time consuming and environmental friendly approach for the synthesis of Ni–Cu–Zn ferrite nanoparticles without using any organic chemicals. Malachite green and basic red 5 were used as model dyes. The characteristics of magnetic nanoparticles were investigated using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning electron microscopy and energy dispersive X-ray analysis. The XRD analysis revealed the formation of Cubic phase ferrite MNPs with average crystallite size of 20 nm. Photocatalytic dye degradation by NiCuZnFe2O4 was studied by UV–Vis spectrophotometer. The effects of NiCuZnFe2O4 dosage, initial dye concentration and visible light irradiation on dye degradation were evaluated. The results indicated that NiCuZnFe2O4 could be used as a magnetic photocatalyst to degrade dyes from aqueous solution. The catalyst can be easily recovered by a simple magnetic separation and can be recycled several times with no significant loss of photocatalytic activity.


Ferrite Photocatalytic Activity Photocatalytic Degradation Magnetic Nanoparticles Malachite Green 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the “Iran National Science Foundation: INSF”.


  1. 1.
    Y. Choi, N.I. Cho, H.C. Kim, Y.D. Hahn, J. Mater. Sci. 11, 25 (2000)CrossRefGoogle Scholar
  2. 2.
    J. Hesse, H. Naghib-zadeh, T. Rabe, J. Töpfer, J. Eur. Ceram. Soc. 36, 1931 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Mürbe, J. Töpfer, J. Eur. Ceram. Soc. 32, 1091 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Košak, D. Makovec, A. Žnidaršič, M. Drofenik, J. Eur. Ceram. Soc. 24, 959 (2004)CrossRefGoogle Scholar
  5. 5.
    S.T. Fardood, A. Ramazani, S. Moradi, J. Sol-Gel Sci. Technol. (2017). doi: 10.1007/s10971-017-4310-6 Google Scholar
  6. 6.
    H. Assi, S. Atiq, S.M. Rammay, N.S. Alzayed, M. Saleem, S. Riaz, S. Naseem, J. Mater. Sci. 28, 2250 (2017)Google Scholar
  7. 7.
    F. Sadri, A. Ramazani, H. Ahankar, S. Taghavi Fardood, P. Azimzadeh Asiabi, M. Khoobi, S. Woo Joo, N. Dayyani, J. Nanostruct. 6, 264 (2016)Google Scholar
  8. 8.
    K. Hedayati, J. Nanostruct. 5, 13 (2015)Google Scholar
  9. 9.
    Y.B. Kannan, R. Saravanan, N. Srinivasan, K. Praveena, K. Sadhana, J. Mater. Sci. 27, 12000 (2016)Google Scholar
  10. 10.
    M. Molaahmadi, S. Baghshahi, A. Ghasemi, J. Mater. Sci. 27, 11447 (2016)Google Scholar
  11. 11.
    A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Magn. Magn. Mater. 320, 2774 (2008)CrossRefGoogle Scholar
  12. 12.
    M.R. Barati, J. Sol-Gel Sci. Technol. 52, 171 (2009)CrossRefGoogle Scholar
  13. 13.
    D. Chen, D.-y.. Li, Z.-t.. Kang, Ultrason. Sonochem. 20, 1337 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Verma, P. Joy, Y. Khollam, H. Potdar, S. Deshpande, Mater. Lett. 58, 1092 (2004)CrossRefGoogle Scholar
  15. 15.
    F. Beshkar, M. Salavati-Niasari, J. Nanostruct. 5, 17 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Chen, Y. Zhang, C. Tu, Mater. Lett. 82, 10 (2012)CrossRefGoogle Scholar
  17. 17.
    G. Nabiyouni, D. Ghanbari, J. Ghasemi, A. Yousofnejad, J. Nanostruct. 5, 289 (2015)Google Scholar
  18. 18.
    P. Hankare, S. Jadhav, U. Sankpal, R. Patil, R. Sasikala, I. Mulla, J. Alloys Compd. 488, 270 (2009)CrossRefGoogle Scholar
  19. 19.
    R. Raeisi Shahraki, M. Ebrahimi, J. Nanostruct. 2, 413 (2012)Google Scholar
  20. 20.
    S. Taghavi Fardood, A. Ramazani, J. Nanostruct. 6, 167 (2016)Google Scholar
  21. 21.
    M. Zohuriaan, F. Shokrolahi, Polym. Test. 23, 575 (2004)CrossRefGoogle Scholar
  22. 22.
    S. Ghayempour, M. Montazer, M.M. Rad, Int. J. Biol. Macromol. 81, 514 (2015)CrossRefGoogle Scholar
  23. 23.
    C.G. da Silva, J.L. Faria, J. Photochem. Photobiol. A 155, 133 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Tadjarodi, H. Kerdari, M. Imani, J. Nanostruct. 2, 9 (2012)Google Scholar
  25. 25.
    R. Talebi, J. Mater. Sci. 27, 6974 (2016)Google Scholar
  26. 26.
    S.A. Hosseini, P. Moalemzade, J. Mater. Sci. 27, 8802 (2016)Google Scholar
  27. 27.
    R. Waldron, Phys. Rev. 99, 1727 (1955)CrossRefGoogle Scholar
  28. 28.
    K.M. Batoo, S. Kumar, C.G. Lee, Curr. Appl Phys. 9, 826 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Krýsa, M. Keppert, J.r.. Jirkovský, V. Štengl, J. Šubrt, Mater. Chem. Phys. 86, 333 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Saquib, M. Muneer, Dyes Pigments 56, 37 (2003)CrossRefGoogle Scholar
  31. 31.
    M. Shanthi, V. Kuzhalosai, Indian J. Chem. Sect. A 51, 428 (2012)Google Scholar
  32. 32.
    M. Rasoulifard, H. Hosseini Monfared, S. Masoudian, Environ. Technol. 32, 1627 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran

Personalised recommendations