Skip to main content
Log in

Low temperature in-situ preparation of reduced graphene oxide/ZnO nanocomposites for highly sensitive photodetectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Unlike traditional approach to improve photoresponse performance of ZnO-based optoelectronic devices, a ultra-low temperature solvothermal process was utilized to prepare reduced graphene oxide (rGO)/ZnO nanocomposites, which realized non-surfactant in-situ preparation of rGO/ZnO nanocomposites with the reduction of graphene oxide (GO) at the low temperature process (<170 °C). The effect of annealing process on the microsturcture and photoelectronic properties of rGO/ZnO nanocomposites and pure ZnO was investigated. The diameter of as-synthesized ZnO nanocrystal in GO/ZnO precursor was about 6.5 nm. The Fourier transform infrared (FTIR) and Raman spectrum results showed that graphene oxide in the precursor has been reduced to rGO. When annealing at a mild temperature below 170 °C, the optimum photocurrent of rGO/ZnO nanocomposites was about 4.5 times compared to pure ZnO, and the corresponding detectivity reached 6.39 × 1010 Jones. The advantage of the low temperature in-situ technic provides an avenue to fabricate high-performance and low-cost optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)

    Article  Google Scholar 

  2. M.S. Poorali, M.M. Bagheri-Mohagheghi, J. Mater. Sci. Mater. El. 27, 10411 (2016)

    Article  Google Scholar 

  3. X.B. Liu, H.J. Du, X.W. Sun, RSC Adv. 4, 5136 (2014)

    Article  Google Scholar 

  4. M.K. Kavitha, H. John, P. Gopinath, R. Philip, J. Mater. Chem. C 1, 3669 (2013)

    Article  Google Scholar 

  5. M. Sookhakian, Y.M. Amin, R. Zakaria, W.J. Basirun, M.R. Mahmoudian, B. Nasiri-Tabrizi, S. Baradaran, M. Azarang, J. Alloy. Comp. 632, 201 (2015)

    Article  Google Scholar 

  6. D.Z. Zhang, H.Y. Chang, P. Li, R.H. Liu, J. Mater. Sci. Mater. El. 27, 3723 (2016)

    Article  Google Scholar 

  7. Q.L. Bao, K.P. Loh, Graphene photonics. ACS Nano 6, 3677 (2012)

    Article  Google Scholar 

  8. H. Abdullah, N.A. Atiqah, A. Omar, I. Asshaari, S. Mahalingam, Z. Razali, S. Shaari, J. S. Mandeep, H. Misran, J. Mater. Sci. Mater. El. 26, 2263 (2015)

    Article  Google Scholar 

  9. B. Chitara, S.B. Krupanidhi, C.N.R. Rao, Appl. Phys. Lett. 99, 113114 (2011)

    Article  Google Scholar 

  10. H.B. Zhang, C. Groh, Q. Zhang, W. Jo, K.G. Webber, J. Rödel, Adv. Electron. Mater 1, 1500018 (2015)

    Article  Google Scholar 

  11. Z.Y. Zhan, L.X. Zheng, Y.Z. Pan, G.Z. Sun, L. Li, J. Mater. Chem 22, 2589 (2012)

    Article  Google Scholar 

  12. D.L. Shao, M.P. Yu, H.T. Sun, T. Hu, J. Lian, S. Sawyer. Nanoscale 5, 3664 (2013)

    Article  Google Scholar 

  13. J.Q. Yu, J. Jin, B. Cheng, M. Jaroniec, J. Mater. Chem. A 2, 3407 (2014)

    Article  Google Scholar 

  14. S. Ratha, A.J. Simbeck, D.J. Late, S.K. Nayak, C.S. Rout. Appl. Phys. Lett. 105, 243502 (2014)

    Article  Google Scholar 

  15. D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, Mater. Today 7, 34 (2004)

    Article  Google Scholar 

  16. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thin Solid Films 619, 41 (2016)

    Article  Google Scholar 

  17. B.D. Boruah, A. Mukherjee, S. Sridhar, A. Misra, ACS Appl. Mater. Inter. 7, 10606 (2015)

    Article  Google Scholar 

  18. Z.H. He, X.Q. Meng, J. Mater. Sci. Mater. El. 24, 3365 (2013)

    Article  Google Scholar 

  19. L.H. Yu, H. Ruan, Y. Zheng, D.Z. Li, Nanotechnology 24, 375601 (2013)

    Article  Google Scholar 

  20. M. Azarang, A. Shuhaini, R. Yousefi, M. Sookhakian, J. Appl. Phys 116, 084307 (2014)

    Article  Google Scholar 

  21. Y.L. Zhang, L. Guo, H. Xia, Q-D. Chen, J. Feng, H-B. Sun, Adv. Optical Mater. 2, 10 (2014)

    Article  Google Scholar 

  22. B.Q. Sun, H. Sirringhaus, Nano Lett. 5, 2408 (2005)

    Article  Google Scholar 

  23. K. Anand, O. Singh, R.C. Singh, Appl. Phys. A 116, 1141 (2014)

    Article  Google Scholar 

  24. H. Liu, Q. Sun, J. Xing, Z.Y. Zheng, Z.L. Zhang, Z.Q. Lu, K. Zhao, ACS Appl. Mater. Inter. 7, 6645 (2015)

    Article  Google Scholar 

  25. T.G. Xu, L.W. Zhang, H.Y. Cheng, Y.F. Zhu, Appl. Catal. B- Environ. 101, 382 (2011)

    Article  Google Scholar 

  26. S. Safa, R. Sarraf-Mamoory, R. Azimirad, J. Sol–Gel. Sci. Techn. 74, 499 (2015)

    Article  Google Scholar 

  27. Y.Z. Jin, J.P. Wang, B.Q. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649 (2008)

    Article  Google Scholar 

  28. Z.X. Wang, X.Y. Zhan, Y.J. Wang, S. Muhammad, Y. Huang, J. He, Nanoscale 4, 2678 (2012)

    Article  Google Scholar 

  29. B.D. Boruah, A. Misra. RSC Adv. 5, 90838 (2015)

    Article  Google Scholar 

  30. M. Chen, L.F. Hu, J.X. Xu, M.Y. Liao, L.M. Wu, X.S. Fang. Small 7, 2449 (2011)

    Google Scholar 

  31. L. Ren, T.T. Tian, Y.Z. Li, J.G. Huang, X.J. Zhao, ACS Appl. Mater. Inter. 5, 5861 (2013)

    Article  Google Scholar 

  32. X.L. Tong, X.Z. Xia, Q.X. Li. Chinese Phys. B 24, 067306 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The present study was supported by the National Nature Science Foundation of China (0204182087). We acknowledge the Analytical and Testing Center of Huazhong University of Science and Technology for characterizations of our samples. We specially thank associate professor Liu Huan at Huazhong University of Science and Technology for providing the preparation conditions and equipments of nanocomposites materials. And we sincerely thank professor Tang Jiang at Huazhong University of Science and Technology to provide a semiconductor device analyzer for our testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Zhu or Shenglin Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, B., Kan, H. et al. Low temperature in-situ preparation of reduced graphene oxide/ZnO nanocomposites for highly sensitive photodetectors. J Mater Sci: Mater Electron 28, 9403–9409 (2017). https://doi.org/10.1007/s10854-017-6681-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6681-4

Keywords

Navigation