Different modifier oxides effect on the photoluminescence and photoinduced piezooptics of Er3+-doped fluorotellurite glasses

  • M. Reben
  • El. Sayed Yousef
  • M. Piasecki
  • A. A. Albassam
  • A. M. El-Naggar
  • G. LakshminarayanaEmail author
  • I. V. Kityk
  • I. Grelowska


Novel fluorotellurite glasses with composition 70TeO2·5MxOy·10P2O5·10ZnO·5PbF2 (mol %) containing 600 ppm Er2O3, where MxOy = (MgO, PbO, Bi2O3, Nb2O5, TiO2, BaO, WO3, SrO, CdO) have been prepared using the conventional melt-quenching method. Studies of the nonlinear optical refractive index and photoinduced piezooptics were carried out. The Mid-Infrared spectroscopy, optical transmission, photoluminescence and photoinduced changes of diagonal piezooptics and nonlinear optics refractive indices coefficient measurements were applied to determine the appropriate glass modifier to achieve the desirable optical properties and high performance. The glasses may be useful for operation by high-intensity laser pulses.


Bi2O3 TeO2 PbF2 Oxyfluoride Tellurite Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.


  1. 1.
    G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, M. Ferraris, Preparation and characterization of new fluorotellurite glasses for photonics application. J. Non-Cryst. Solids 355, 447–452 (2009)CrossRefGoogle Scholar
  2. 2.
    S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe, Liquid-cooled 24 W mid-infrared Er3+: ZBLAN fiber laser. Opt. Lett 34, 3062–3064 (2009)CrossRefGoogle Scholar
  3. 3.
    M.D. O’Donnell, K. Richardson, R. Stolen, A.B. Seddon, D. Furniss, V.K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, T. Cardinal, Tellurite and fluorotellurite glasses for fiber optic raman amplifiers: Glass characterization, optical properties, Raman gain, preliminary, fiberization, and fiber characterization. J. Am. Ceram. Soc. 90, 1448 (2007)CrossRefGoogle Scholar
  4. 4.
    J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications. IEEE J. Sel. Top. Quant. 15, 114–119 (2009)CrossRefGoogle Scholar
  5. 5.
    B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)Google Scholar
  6. 6.
    K. Damak, E. Yousef, S. AlFaify, C. Rüssel, R. Maâlej, Raman, green and infrared emission cross-sections of Er3+ doped TZPPN tellurite glass. Opt. Mater. Exp. 4, 597–612 (2014)CrossRefGoogle Scholar
  7. 7.
    E.S. Yousef, Er3+ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application. J. Alloys Compd. 561, 234–240 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Burtan, Z. Mazurak, J. Cisowski, M. Czaja, R. Lisiecki, W. Ryba-Romanowski, M. Reben, J. Wasylak, Optical properties of Nd3+ and Er3+ ions in TeO2–WO3–PbO–La2O3 glasses. Opt. Mater 34, 2050–2054 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Benmadani, A. Kermaoui, M. Chalal, W. Khemici, A. Kellou, F. Pelle, Erbium doped tellurite glasses with improved thermal properties as promising candidates for laser action and amplification. Opt. Mater 35, 2234–2240 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Mori, Y. Ohishi, S. Sudo, Erbium-doped tellurite glass fibre laser and amplifier. Electron. Lett. 33, 863 (1997)CrossRefGoogle Scholar
  11. 11.
    I. Jlassi, H. Elhouichet, M. Ferid, R. Chtourou, M. Oueslati, Study of photoluminescence quenching in Er 3+-doped tellurite glasses. Opt. Mater. 32, 743 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Zhang, J. Qiu, Y. Kawamoto, New oxyfluorotellurite glass: Thermal analysis and structural analysis by means of Raman scattering. Mater. Lett. 55, 77–82 (2002)CrossRefGoogle Scholar
  13. 13.
    V. Nazabal, S. Todoroki, S. Inoue, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, T. Cardinal, Spectral properties of Er3+ doped oxyfluoride tellurite glasses. J. Non-Cryst. Solids 326, 359–363 (2003)CrossRefGoogle Scholar
  14. 14.
    P. Domachuk, N. Wolchover, M. Cronin-Golomb, Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16, 7161–7168 (2008)CrossRefGoogle Scholar
  15. 15.
    S.F. León-Luis, U.R. Rodríguez-Mendoza, E. Lalla, Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass. Sens. Actuators B 158, 208–213 (2011)CrossRefGoogle Scholar
  16. 16.
    W. Tsang, W. Yu, C. Mak, Evidence of the influence of phonon density on Tm3+ upconversion luminescence in tellurite and germanate glasses. J. Appl. Phys. 91, 1871–1874 (2002)CrossRefGoogle Scholar
  17. 17.
    J. Yue, T. Xue, F. Huang, M. Liao, Y. Ohishi, Thermally stable mid-infrared fluorotellurite glass with low OH content. J. Non-Cryst. Solids 408, 1–6 (2015)CrossRefGoogle Scholar
  18. 18.
    M.D. O’Donnell, C.A. Miller, D. Furniss, V.K. Tikhomirov, A.B. Seddon, Fluorotellurite glasses with improved mid-infrared transmission. J. Non-Cryst. Solids 331, 48–57 (2003)CrossRefGoogle Scholar
  19. 19.
    X. Feng, S. Tanabe, T. Hanada, Hydroxyl groups in erbium-doped germanotellurite glasses. J. Non-Cryst. Solids 281, 48–54 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Reben
    • 1
  • El. Sayed Yousef
    • 2
  • M. Piasecki
    • 3
  • A. A. Albassam
    • 4
  • A. M. El-Naggar
    • 4
    • 5
  • G. Lakshminarayana
    • 6
    Email author
  • I. V. Kityk
    • 7
  • I. Grelowska
    • 1
  1. 1.AGH Univeristy of Science and Technology, Faculty of Materials Science and CeramicsKrakowPoland
  2. 2.Department of Physics, Faculty of SciencesKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Institute of PhysicsJan Dlugosz UniversityCzestochowaPoland
  4. 4.Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Dept., College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Physics Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  6. 6.Wireless and Photonic Networks Research Centre, Faculty of EngineeringUniversiti Putra MalaysiaSelangorMalaysia
  7. 7.Faculty of Electrical EngineeringCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations