Effects of donor position on dibenzofulvene-based organic dyes for photovoltaics

  • Giuseppina Anna Corrente
  • Eduardo Fabiano
  • Luisa De Marco
  • Gianluca Accorsi
  • Roberto Giannuzzi
  • Antonio Cardone
  • Giuseppe Gigli
  • Giuseppe Ciccarella
  • Agostina-Lina Capodilupo


A series of push–pull organic dyes based on the cyanoacrylic acid as the acceptor/anchoring group, a dibenzofulvene (DBF) connected with thienyl rings as the π-bridge, and donor units linked to different positions of the DBF molecule were synthetized and studied. The effects of the donor position on optical and photovoltaic properties were investigated through photophysics, electrochemical and photovoltaic measurements. The results uphold photovoltaic performances largely depend on the electronic structure of the dyes with a synergistic interaction between donor and acceptor groups. In detail, a fine tuning of the photophysical properties can be reached simply selecting the position of the donor unit on the DBF molecule. In particular, the dyes bearing the donor unit on the 3,6-positions of the DBF show better performances in term of light absorption and cell efficiency with respect to the dyes with the donor unit on the 2,7-positions.



This research was supported by “Nanotecnologie Molecolari per la Salute dell’Uomo e l’Ambiente_MAAT” Cod. PON02_00563_3316357. CUP: B31C12001230005, by the project EFOR—Energia da Fonti Rinnovabili (Iniziativa CNR per il Mezzogiorno L. 191/2009 art. 2 comma 44), by PON 254/Ric. Potenziamento del “CENTRO RICERCHE PER LA SALUTE DELL’UOMO E DELL’AMBIENTE” Cod. PONa3_00334. CUP: F81D11000210007 and and by Regione PUGLIA (APQ Reti di Laboratorio, project “PHOEBUS” cod. 31).

Supplementary material

10854_2017_6594_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1235 KB)


  1. 1.
    A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3–24 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Achelle, A. Barsella, B. Caro, F. Robin-le Guen, Donor-linker-acceptor (D-[small pi]-A) diazine chromophores with extended [small pi]-conjugated cores: synthesis, photophysical and second order nonlinear optical properties. RSC Adv. 5, 39218–39227 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Sarma, T. Chatterjee, S. Ghanta, S.K. Das, D-π-A-A-π-D Prototype 2,2′-bipyridine dyads exhibiting large structure and environment-sensitive fluorescence: synthesis, photophysics, and computation. J. Org. Chem. 77, 432–444 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Moon, W.S. Jahng, M.D. Curtis, Transistor performance of a “push-pull”, [small pi]-stacked bithiazole-ethylenedioxythiophene co-oligomer. J. Mater. Chem. 18, 4856–4863 (2008)CrossRefGoogle Scholar
  5. 5.
    T. Kimoto, K. Tanaka, M. Kawahata, K. Yamaguchi, S. Otsubo, Y. Sakai, Y. Ono, A. Ohno, K. Kobayashi, Bis(methylthio)tetracenes: synthesis, crystal-packing structures, and OFET properties. J. Org. Chem. 76, 5018–5025 (2011)CrossRefGoogle Scholar
  6. 6.
    D. Yu, Y. Liu, M. Xiao, Q. Fan, W. Su, X. Li, H. Tan, Y. Wang, R. Yang, W. Zhu, Synthesis and photovoltaic performance of DPP-based small molecules with tunable energy levels by altering the molecular terminals. Dyes Pigm. 125, 151–158 (2016)CrossRefGoogle Scholar
  7. 7.
    A.L. Capodilupo, E. Fabiano, L. De Marco, G. Ciccarella, G. Gigli, C. Martinelli, A. Cardone, [1]Benzothieno[3,2-b]benzothiophene-based organic dyes for dye-sensitized solar cells. J. Org. Chem. 81, 3235–3245 (2016)CrossRefGoogle Scholar
  8. 8.
    J.L. Segura, N. Martin, D.M. Guldi, Materials for organic solar cells: the C60/[small pi]-conjugated oligomer approach. Chem. Soc. Rev. 34, 31–47 (2005)CrossRefGoogle Scholar
  9. 9.
    Z. Wang, M. Liang, Y. Tan, L. Ouyang, Z. Sun, S. Xue, Organic dyes containing dithieno[2,3-d:2[prime or minute],3[prime or minute]-d[prime or minute]]thieno[3,2-b:3[prime or minute],2[prime or minute]-b[prime or minute]]dipyrrole core for efficient dye-sensitized solar cells. J. Mater. Chem. A 3, 4865–4874 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Baldoli, S. Bertuolo, E. Licandro, L. Viglianti, P. Mussini, G. Marotta, P. Salvatori, F. De Angelis, P. Manca, N. Manfredi, A. Abbotto, Benzodithiophene based organic dyes for DSSC: effect of alkyl chain substitution on dye efficiency. Dyes Pigm. 121, 351–362 (2015)CrossRefGoogle Scholar
  11. 11.
    Q. Qi, X. Wang, L. Fan, B. Zheng, W. Zeng, J. Luo, K.-W. Huang, Q. Wang, J. Wu, N-annulated perylene-based push–pull-type sensitizers. Org. Lett. 17, 724–727 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Scrascia, L. De Marco, S. Laricchia, R.A. Picca, C. Carlucci, E. Fabiano, A.L. Capodilupo, F. Della Sala, G. Gigli, G. Ciccarella. Fluorine-thiophene-substituted organic dyes for dye sensitized solar cells. J. Mater. Chem. A 1, 11909–11921 (2013)CrossRefGoogle Scholar
  13. 13.
    S.F. Völker, M. Renz, M. Kaupp, C. Lambert, Squaraine dyes as efficient coupling bridges between triarylamine redox centres.Chemistry 17 14147–14163 (2011)CrossRefGoogle Scholar
  14. 14.
    Z. Li, Y. Zang, C.-C. Chueh, N. Cho, J. Lu, X. Wang, J. Huang, C.-Z. Li, J. Yu, A.K.Y. Jen, Tetrathienodibenzocarbazole based donor–acceptor type wide band-gap copolymers for polymer solar cell applications. Macromolecules 47, 7407–7415 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Velusamy, K.R. Justin Thomas, J.T. Lin, Y.-C. Hsu, K.-C. Ho, Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Org. Lett. 7, 1899–1902 (2005)CrossRefGoogle Scholar
  16. 16.
    Y. Wu, W.-H. Zhu, S.M. Zakeeruddin, M. Grätzel, Insight into D–A–π–A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 9307–9318 (2015)CrossRefGoogle Scholar
  17. 17.
    H. Zhao, J. Long, X. Luo, B. Zhao, S. Tan, 2-Ethynyl-6-methylthieno[3,2-b]thiophene as an efficient π spacer for porphyrin-based dyes. Dyes Pigm. 122, 168–176 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Wu, W. Zhu, Organic sensitizers from D-[small pi]-A to D-A-[small pi]-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 42, 2039–2058 (2013)CrossRefGoogle Scholar
  19. 19.
    S.C. Rasmussen, R.L. Schwiderski, M.E. Mulholland, Thieno[3,4-b]pyrazines and their applications to low band gap organic materials. Chem. Commun. (Camb.) 47, 11394–11410 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 42, 2824–2860 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Pandey, C. Risko, J.E. Norton, J.-L. Brédas, Donor–acceptor copolymers of relevance for organic photovoltaics: a theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties. Macromolecules 45, 6405–6414 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 42, 3453–3488 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Bessette, G.S. Hanan, Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices. Chem. Soc. Rev. 43, 3342–3405 (2014)CrossRefGoogle Scholar
  24. 24.
    B. Yao, X. Ye, J. Zhang, X. Wan, Electrochromism of a fused acceptor–donor–acceptor triad covering entire UV–vis and near-infrared regions. Org. Lett. 16, 5378–5381 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Heckmann, C. Lambert, M. Goebel, R. Wortmann Synthesis and photophysics of a neutral organic mixed-valence compound. Angew. Chem. Int. Ed. 43, 5851–5856 (2004)CrossRefGoogle Scholar
  26. 26.
    A.L. Capodilupo, L. De Marco, E. Fabiano, R. Giannuzzi, A. Scrascia, C. Carlucci, G.A. Corrente, M.P. Cipolla, G. Gigli, G. Ciccarella, New organic dyes based on a dibenzofulvene bridge for highly efficient dye-sensitized solar cells. J. Mater. Chem. A 2, 14181–14188 (2014)CrossRefGoogle Scholar
  27. 27.
    A.L. Capodilupo, L. De Marco, G.A. Corrente, R. Giannuzzi, E. Fabiano, A. Cardone, G. Gigli, G. Ciccarella, Synthesis and characterization of a new series of dibenzofulvene based organic dyes for DSSCs. Dyes Pigm. 130, 79–89 (2016)CrossRefGoogle Scholar
  28. 28.
    F. Lincker, B. Heinrich, R. De Bettignies, P. Rannou, J. Pecaut, B. Grevin, A. Pron, B. Donnio, R. Demadrille, Fluorenone core donor-acceptor-donor [small pi]-conjugated molecules end-capped with dendritic oligo(thiophene)s: synthesis, liquid crystalline behaviour, and photovoltaic applications. J. Mater. Chem. 21, 5238–5247 (2011)CrossRefGoogle Scholar
  29. 29.
    K.R. Baheti, C.-P. Justin Thomas, C.-T. Lee, K.-C. Li, Ho, Organic dyes containing fluoren-9-ylidene chromophores for efficient dye-sensitized solar cells. J. Mater. Chem. A 2, 5766–5779 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Karak, P.J. Homnick, L.A. Renna, D. Venkataraman, J.T. Mague, P.M. Lahti, Solution-processed photovoltaics with a 3,6-Bis(diarylamino)fluoren-9-ylidene Malononitrile. ACS Appl. Mater. Interfaces 6, 16476–16480 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Kim, S.H. Kim, I.H. Jung, E. Jeong, Y. Xia, S. Cho, I.-W. Hwang, K. Lee, H. Suh, H.-K. Shim, H.Y. Woo, Synthesis and characterization of indeno[1,2-b]fluorene-based low bandgap copolymers for photovoltaic cells. J. Mater. Chem. 20, 1577–1586 (2010)CrossRefGoogle Scholar
  32. 32.
    N. Delbosc, W.Z.N. Yahya, N. Lemaitre, S. Berson, F. Fuchs, B. Grevin, J. Faure-Vincent, J.-P. Travers, R. Demadrille, Synthesis, optoelectronic and photovoltaic properties of conjugated alternating copolymers incorporating 2,1,3-benzothiadiazole or fluorenone units: a comparative study. RSC Adv. 4, 15236–15244 (2014)CrossRefGoogle Scholar
  33. 33.
    C.-H. Siu, L.T. Lin Lee, P.-Y. Ho, P. Majumdar, C.-L. Ho, T. Chen, J. Zhao, H. Li, W.-Y. Wong, Fluorene-bridged organic dyes with di-anchoring groups for efficient co-adsorbent-free dye-sensitized solar cells. J. Mater. Chem. C 2, 7086–7095 (2014)CrossRefGoogle Scholar
  34. 34.
    N.S. Hush, Distance dependence of electron transfer rates. Coord. Chem. Rev. 64, 135–157 (1985)CrossRefGoogle Scholar
  35. 35.
    M. Gholami, R.R. Tykwinski, Oligomeric and polymeric systems with a cross-conjugated π-framework. Chem. Rev. 106, 4997–5027 (2006)CrossRefGoogle Scholar
  36. 36.
    J.-J. Shen, J.-Y. Shao, X. Zhu, Y.-W. Zhong, Amine–Amine electronic coupling through a dibenzo[a,e]pentalene bridge. Org. Lett. 18, 256–259 (2016)CrossRefGoogle Scholar
  37. 37.
    L.A. Estrada, J.E. Yarnell, D.C. Neckers, Revisiting fluorenone photophysics via dipolar fluorenone derivatives. J. Phys. Chem. A 115, 6366–6375 (2011)CrossRefGoogle Scholar
  38. 38.
    L.A. Estrada, X. Cai, D.C. Neckers, Nonradiative decay mechanism of fluoren-9-ylidene malononitrile ambipolar derivatives. J. Phys. Chem. A 115, 2184–2195 (2011)CrossRefGoogle Scholar
  39. 39.
    L.A. Estrada, D.C. Neckers, Synthesis and photophysics of ambipolar fluoren-9-ylidene malononitrile derivatives. J. Org. Chem. 74, 8484–8487 (2009)CrossRefGoogle Scholar
  40. 40.
    G.L. Eakins, J.S. Alford, B.J. Tiegs, B.E. Breyfogle, C.J. Stearman, Tuning HOMO–LUMO levels: trends leading to the design of 9-fluorenone scaffolds with predictable electronic and optoelectronic properties. J. Phys. Org. Chem. 24, 1119–1128 (2011)CrossRefGoogle Scholar
  41. 41.
    M. Shigeta, M. Morita, G.-I. Konishi, Selective formation of twisted intramolecular charge transfer and excimer emissions on 2,7-bis(4-Diethylaminophenyl)-fluorenone by choice of solvent. Molecules 17, 4452 (2012)CrossRefGoogle Scholar
  42. 42.
    P.J. Homnick, P.M. Lahti, Modular electron donor group tuning of frontier energy levels in diarylaminofluorenone push-pull molecules. Phys. Chem. Chem. Phys. 14, 11961–11968 (2012)CrossRefGoogle Scholar
  43. 43.
    P.J. Homnick, J.S. Tinkham, R. Devaughn, P.M. Lahti, Engineering frontier energy levels in donor–acceptor fluoren-9-ylidene malononitriles versus fluorenones. J. Phys. Chem. A 118, 475–486 (2014)CrossRefGoogle Scholar
  44. 44.
    G.A. Crosby, J.N. Demas, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971)CrossRefGoogle Scholar
  45. 45.
    K. Nakamaru, Synthesis, luminescence quantum yields, and lifetimes of trischelated ruthenium(ii) mixed-ligand complexes including 3,3′-dimethyl-2,2′-bipyridyl. Bull. Chem. Soc. Jpn. 55, 2697–2705 (1982)CrossRefGoogle Scholar
  46. 46.
    L.A. Constantin, E. Fabiano, F. Della Sala, Meta-GGA exchange-correlation functional with a balanced treatment of nonlocality. J. Chem. Theory Comput. 9, 2256–2263 (2013)CrossRefGoogle Scholar
  47. 47.
    D.H. Evans, One-electron and two-electron transfers in electrochemistry and homogeneous solution reactions. Chem. Rev. 108, 2113–2144 (2008)CrossRefGoogle Scholar
  48. 48.
    S. Pluczyk, P. Zassowski, C. Quinton, P. Audebert, V. Alain-Rizzo, M. Lapkowski, Unusual electrochemical properties of the electropolymerized thin layer based on a s-tetrazine-triphenylamine monomer. J. Phys. Chem. C 120, 4382–4391 (2016)CrossRefGoogle Scholar
  49. 49.
    A.D. Becke, A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993)CrossRefGoogle Scholar
  50. 50.
    Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008)CrossRefGoogle Scholar
  51. 51.
    R. Li, J. Zheng, D.G. Truhlar, Density functional approximations for charge transfer excitations with intermediate spatial overlap. Phys. Chem. Chem. Phys. 12, 12697–12701 (2010)CrossRefGoogle Scholar
  52. 52.
    M. Pastore, E. Mosconi, F. De Angelis, M. Grätzel, A computational investigation of organic dyes for dye-sensitized solar cells: benchmark, strategies, and open issues. J. Phys. Chem. C 114, 7205–7212 (2010)CrossRefGoogle Scholar
  53. 53.
    S. Kupfer, J. Guthmuller, L. González, An assessment of RASSCF and TDDFT energies and gradients on an organic donor–acceptor dye assisted by resonance raman spectroscopy. J. Chem. Theory Comput. 9, 543–554 (2013)CrossRefGoogle Scholar
  54. 54.
    G. Garcia, C. Adamo, I. Ciofini, Evaluating push-pull dye efficiency using TD-DFT and charge transfer indices. Phys. Chem. Chem. Phys. 15, 20210–20219 (2013)CrossRefGoogle Scholar
  55. 55.
    E. Gabrielle, J.-P. Gomez, Korb, probing rubber cross-linking generation of industrial polymer networks at nanometer scale. J. Phys. Chem. B 120, 5581–5589 (2016)CrossRefGoogle Scholar
  56. 56.
    F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294, 143–152 (1998)CrossRefGoogle Scholar
  57. 57.
    G. Klamt, G. Schuurmann COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2, 799–805 (1993)CrossRefGoogle Scholar
  58. 58.
    A. Klamt, V. Jonas, Treatment of the outlying charge in continuum solvation models. J. Chem. Phys. 105, 9972–9981 (1996)CrossRefGoogle Scholar
  59. 59.
    TURBOMOLE V6.4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007, http://www.turbomole.com
  60. 60.
    G. Lambert, J. Noll, J. Schelter, Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems. Nat Mater 1, 69–73 (2002)CrossRefGoogle Scholar
  61. 61.
    A.L. Capodilupo, V. Vergaro, E. Fabiano, M. De Giorgi, F. Baldassarre, A. Cardone, A. Maggiore, V. Maiorano, D. Sanvitto, G. Gigli, G. Ciccarella, Design and synthesis of fluorenone-based dyes: two-photon excited fluorescent probes for imaging of lysosomes and mitochondria in living cells. J. Mater. Chem. B 3, 3315–3323 (2015)CrossRefGoogle Scholar
  62. 62.
    N. Hayashi, T. Nishihara, T. Matsukihira, H. Nakashima, K. Miyabayashi, M. Miyake, H. Higuchi, Orientation and substituent effects on the properties of the diacetylene-group connected octaethylporphyrin–dihexylbithiophene derivatives (OEP–DHBTh–X) carrying electron-withdrawing groups. Bull. Chem. Soc. Jpn. 80, 371–386 (2007)CrossRefGoogle Scholar
  63. 63.
    S. Roquet, A. Cravino, P. Leriche, O. Alévêque, P. Frère, J. Roncali, Triphenylamine–thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. J. Am. Chem. Soc. 128, 3459–3466 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Giuseppina Anna Corrente
    • 1
    • 2
    • 3
  • Eduardo Fabiano
    • 2
    • 4
  • Luisa De Marco
    • 2
  • Gianluca Accorsi
    • 1
  • Roberto Giannuzzi
    • 2
  • Antonio Cardone
    • 5
  • Giuseppe Gigli
    • 1
    • 6
  • Giuseppe Ciccarella
    • 1
    • 7
  • Agostina-Lina Capodilupo
    • 1
  1. 1.CNR NANOTEC - Institute of Nanotechnology c/o Campus EcotekneUniversity of SalentoLecceItaly
  2. 2.Center for Biomolecular Nanotechnologies (CBN) Fondazione Istituto Italiano di Tecnologia (IIT)ArnesanoItaly
  3. 3.Dipartimento di Ingegneria dell’InnovazioneUniversità del SalentoLecceItaly
  4. 4.Institute for Microelectronics and Microsystems (CNR-IMM)LecceItaly
  5. 5.Istituto di Chimica dei Composti OrganoMetallici (ICCOM)Consiglio Nazionale delle Ricerche CNRBariItaly
  6. 6.Dipartimento di Matematica e Fisica”Ennio De Giorgi”Università del SalentoLecceItaly
  7. 7.Dipartimento di Scienze e Tecnologie Biologiche e AmbientaliUniversita’ del Salento c/o Edificio “La Stecca”LecceItaly

Personalised recommendations