Influence of annealing on dielectric and polarization behavior of PVDF thick films

  • Shobhneek Kaur
  • Ashok Kumar
  • Amit L. Sharma
  • Dwijendra P. Singh
Article
  • 227 Downloads

Abstract

The polyvinylidene fluoride (PVDF) thick film has been fabricated by a solution casting method. The fabricated film is subjected to annealing at 50, 90, 100, 110 and 130 °C for 5 h. The effect of annealing on structural, crystalline, dielectric and polarization behavior is investigated. The β-phase PVDF is found to coexist with α-phase for annealing temperature upto 100 °C, after that β-phase is converted to α-phase. The film annealed at 100 °C, exhibits enhanced permittivity, reduced tangent loss and enhanced polarization. The dielectric permittivity and tangent loss of film annealed at 100 °C are ~11 and ~0.025 respectively for the frequency range of 103–105 Hz. The saturation polarization for this film is ~1.27 µC/cm2. The enhanced dielectric permittivity and polarization for the film annealed at 100 °C might be attributed to increase in crystalline α and β-phase interface as well as crystalline amorphous interface. The thick film of PVDF with improved dielectric and polarization behavior could be useful for high power electronics application.

References

  1. 1.
    P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H Gao, H.J. Ploehn, H.C. Zur Loye, Mater. 2(4), 1697–1733 (2009)Google Scholar
  2. 2.
    H. Tang, H.A. Sodano, Nano Lett. 13(4), 1373–1379 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Tang, Y. Lin, H.A. Sodano, Ad.v.. Energy Mater. 3(4), 451–456 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Li, Q. Meng, W. Li, Z. Zhang, J. Appl. Polym. Sci 122(3), 1659–1668 (2011)CrossRefGoogle Scholar
  5. 5.
    Z.C. Zhang, Q.J. Meng, T.C.M. Chung, Polym. 50(2), 707–715 (2009)CrossRefGoogle Scholar
  6. 6.
    N. Ortega, A. Kumar, J.F. Scott, D.B. Chrisey, M. Tomazawa, S. Kumari, D.G.B. Diestra, R.S. Katiyar. J. Phys. Condens. Matter 24(44), 445901 (2008)CrossRefGoogle Scholar
  7. 7.
    R.X. Han, J.Z. Jin, P. Khanchaitit, J.K. Wang, Q. Wang, Polym. 53(6), 1277–1281 (2012)CrossRefGoogle Scholar
  8. 8.
    H.S. Nalwa, Ferroelectric polymers: Chemistry, physics and applications. (Marcel Dekker, New York, 1995) Chap. 3 and4, 183–260Google Scholar
  9. 9.
    A.J. Lovinger, Developments in crystalline polymers. D.C. Basset, (Springer, Netherlands, 1982), Chap. 5Google Scholar
  10. 10.
    A.J. Lovinger, Macromol, 15(1), 40–44 (1982)CrossRefGoogle Scholar
  11. 11.
    M.M. Nasef, H. Saidi, K.Z.M. Dahlan, J. Polym. Degrad. Stab. 75(1), 85–92 (2002)CrossRefGoogle Scholar
  12. 12.
    X. He, K. Yao, Appl. Phys. Lett. 89(11), 112909 (2006)CrossRefGoogle Scholar
  13. 13.
    S. Chen, K. Yao, F.E.H. Tay, C.L. Liow, J. Appl. Phys 102(10), 104108 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Satapathy, S. Pawar, P.K. Gupta, K.B.R. Varma, Bull. Mater. Sci. 34(4), 727–733 (2011)CrossRefGoogle Scholar
  15. 15.
    W.M. Prest, D.J. Luca, J. Appl. Phys 46(10), 4136–4143 (1975)CrossRefGoogle Scholar
  16. 16.
    V. Tiwari, G. Srivastava, J. Polym. Res. 21(11), 587 (2014)CrossRefGoogle Scholar
  17. 17.
    W.M. Prest, D.J. Luca, J. Appl. Phys 49(10), 5042–5047 (1978)CrossRefGoogle Scholar
  18. 18.
    F. Guan, J. Pan, J. Wang, Q. Wang, L. Zhu, Macromol. 43(1), 384–392 (2010)CrossRefGoogle Scholar
  19. 19.
    Q. Meng, W. Li, Y. Zheng, Z. Zheng, Z. Zhang, J. Appl. Polym. Sci 116(5), 2674–2684 (2010)Google Scholar
  20. 20.
    Y. Zhao, W. Yang, Y. Zhou, Y. Chen, X. Cao, Y. Yang, J. Xu, Y. Jiang, J. Mater. Sci: Mater. Electron 27(7), 7280–7286 (2016)Google Scholar
  21. 21.
    R.G. Jr, J. Appl. Polym. Sci 100(4), 3272–3279 (2006)CrossRefGoogle Scholar
  22. 22.
    R.G. Jr, J. Mater. Sci 34(18), 4489–4500 (1999)CrossRefGoogle Scholar
  23. 23.
    P. Martins, A.C. Lopes, S.L. Mendez, Prog. Plym. Sci. 39(4), 683–706 (2014)CrossRefGoogle Scholar
  24. 24.
    B. Luo, X. Wang, Y. Wang, L. Li, J. Mater. Chem. A 2(3), 510–519 (2010)Google Scholar
  25. 25.
    S. Lanceros-Mendez, J.F. Mano, A.M. Costa, V.H. Schmidt, J. Macromol. Sci. Part B 40(3–4), 517–527 (2001)CrossRefGoogle Scholar
  26. 26.
    Y. Bromashenko, R. Pogreb, O. Stanevsky, E. Bormashenko, Polym. Test. 23(7), 791–796 (2004)CrossRefGoogle Scholar
  27. 27.
    H.C. Yang, Q.Y. Wu, H.Q. Liang, L. Wan, Z. Xu, J. Poly. Sci. Part B: Poly. Phys. 51(19), 1438–1447 (2013)CrossRefGoogle Scholar
  28. 28.
    C. Marega, A. Marigo, Eur. Polym. J 39(8), 1713–1720 (2003)CrossRefGoogle Scholar
  29. 29.
    Y.L. Madorskaya, N.N. Loginova, L.P. Kastorski, O.V. Kuzmichov, V.L. Maksimov, A.M. Lobanov, Polym. Sci. USSR 28(6), 1433–1440 (1996)CrossRefGoogle Scholar
  30. 30.
    K.P. Parmoda, A. Mohamed, I.Y. Phang, T. Liu, Polym. Int. 54(1), 226–232 (2005)CrossRefGoogle Scholar
  31. 31.
    Z. Zhang, T.C.M. Chung, Macromol. 40(4), 783–785 (2007)CrossRefGoogle Scholar
  32. 32.
    Z. Zhang, T.C.M. Chung, Macromol. 40(33), 9391–9397 (2007)CrossRefGoogle Scholar
  33. 33.
    Y. Li, X. Huang, Z. Hu, P. Jiang, S. Li, T. Tanaka, Appl, Mater. Interfaces 3(11), 4396–4403 (2011)CrossRefGoogle Scholar
  34. 34.
    C.V. Chanmal, J.P. Jog, Express. Polym. Lett 2(4), 294–301 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Physics & Materials ScienceThapar UniversityPatialaIndia
  2. 2.CSIR- National Physical LaboratoryDelhiIndia
  3. 3.Thin Film Group, CSIR- CSIOChandigarhIndia

Personalised recommendations