Skip to main content
Log in

One step synthesis of a hybrid Ag/rGO conductive ink using a complexation–covalent bonding based approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 15 July 2017

This article has been updated

Abstract

Hybrid inks formulated using silver nanoparticles with graphene or graphene oxide (GO) have been of significant interest in development of conductive inks for manufacturing of flexible devices and systems. So far all of the methods for synthesizing these inks are based on a two-step process using silver nanoparticles. Herein, we report an Ag/rGO hybrid ink formulated by a one step method through a complexation–covalent bonding process of silver acetate and ethanolamine together with reduced graphene oxide (rGO). Successful dispersion of rGO in the alcohol based solvent was achieved by decorating rGO platelets with ethanolamine. The synthesized ink was just composed of 13.5 wt% of silver and 0.1 wt% rGO but has a favorable electrical performance. A remarkable improvement of resistivity by a factor of above 200 has been observed in Ag/rGO films sintered at 150 °C as compared with that of the Ag films produced using the same formulation and thermal treatment process, while a factor of 10 was observed at 165 °C. The enhancement of conductivity was significant up to the sintering temperature of 230 °C beyond which the difference between the Ag/rGO and Ag films are negligible. The increase of conductivity in Ag/rGO films at low temperatures was attributed to the role of rGO platelets in forming bridges to facilitate charge transfer between the silver particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

  • 15 July 2017

    An erratum to this article has been published.

References

  1. J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee, J. Yeo, S.S. Lee, T.-S. Kim, D. Lee, S.H. Ko, Adv. Funct. Mater. 23, 4171 (2013)

    Article  Google Scholar 

  2. C.T. Wang, K.Y. Huang, D.T.W. Lin, Y.C. Hu, Sensors 10, 5054 (2010)

    Article  Google Scholar 

  3. H. Okimoto, T. Takenobu, K. Yanagi, Y. Miyata, H. Shimotani, H. Kataura, Y. Iwasa, Adv. Mater. 22, 3981 (2010)

    Article  Google Scholar 

  4. J.Y. Kwon, D.H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, A. Boukai, Nano Lett. 12, 5143 (2012)

    Article  Google Scholar 

  5. J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen, Q. Pei, ACS Nano 8, 1590 (2014)

    Article  Google Scholar 

  6. H. Gwon, H.S. Kim, K.U. Lee, D.H. Seo, Y.C. Park, Y.S. Lee, B.T. Ahn, K. Kang, Energy Environ. Sci. 4, 1277 (2011)

    Article  Google Scholar 

  7. A. Kamyshny, S. Magdassi, Small 10, 3515 (2014)

    Article  Google Scholar 

  8. N. Perinka, C. H. Kim, M. Kaplanova, Y. Bonnassieux, Phys. Procedia 44, 120 (2013)

    Article  Google Scholar 

  9. W.R. Small, M. in het Panhuis, Small 3, 1500 (2007)

    Article  Google Scholar 

  10. J.W. Han, B. Kim, J. Li, M. Meyyappan, Mater. Res. Bull. 50, 249 (2014)

    Article  Google Scholar 

  11. J.T. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Ostling, Adv. Mater. 25, 3985 (2013)

    Article  Google Scholar 

  12. C.N. Chen, C.P. Chen, T.Y. Dong, T.C. Chang, M.C. Chen, H.T. Chen, I.G. Chen, Acta Mater. 60, 5914 (2012)

    Article  Google Scholar 

  13. S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, ACS Nano 4, 1943 (2010)

    Article  Google Scholar 

  14. S.B. Walker, J.A. Lewis, J. Am. Chem. Soc. 134, 1419 (2012)

    Article  Google Scholar 

  15. R. Shankar, L. Groven, A. Amert, K.W. Whites, J.J. Kellar, J. Mater. Chem 21, 10871 (2011)

    Article  Google Scholar 

  16. B.Y. Ahn, D.J. Lorang, J.A. Lewis, Nanoscale 3, 2700 (2011)

    Article  Google Scholar 

  17. W.D. Yang, C.Y. Liu, Z.Y. Zhang, Y. Liu, S.D. Nie, J. Mater. Chem 22, 23012 (2012)

    Article  Google Scholar 

  18. Y. Chang, D.Y. Wang, Y.L. Tai, Z.G. Yang, J. Mater. Chem 22, 25296 (2012)

    Article  Google Scholar 

  19. C.N. Chen, T.Y. Dong, T.C. Chang, M.C. Chen, H.L. Tsai, S.W. Hwang. J. Mater. Chem 33, 5161 (2013)

    Google Scholar 

  20. I. Jung, Y.H. Jo, I. Kim, H.M. Lee, J. Electron. Mater. 41, 115 (2012)

    Article  Google Scholar 

  21. W.D. Yang, C.Y. Liu, Z.Y. Zhang, Y. Liu, S.D. Nie, RSC Adv. 4, 60144 (2014)

    Article  Google Scholar 

  22. S. Jeong, S.H. Lee, Y. Jo, S.S. Lee, Y.H. Seo, B.W. Ahn, G. Kim, G.E. Jang, J.U. Park, B.H. Ryu, Y. Choi, J. Mater. Chem. C 1, 2704 (2013)

    Article  Google Scholar 

  23. Y. Dong, X.D. Li, S.H. Liu, Q. Zhu, J.G. Li, X.D. Sun, Thin Solid Films 589, 381 (2015)

    Article  Google Scholar 

  24. Q.J. Huang, W.F. Shen, Q.S. Xu, R.Q. Tan, W.J. Song, Mater. Chem. Phys. 147, 550 (2014)

    Article  Google Scholar 

  25. J.T. Wu, S.L.C. Hsu, M.H. Tsai, Y.F. Liu, S.W. Hwang. J. Mater. Chem. 22, 15599 (2012)

    Article  Google Scholar 

  26. D.Y. Wang, Y. Chang, Q.S. Lu, Z.G. Yang, Mater. Tech. 30, 54 (2015)

    Article  Google Scholar 

  27. X.L. Nie, H. Wang H, J. Zou, Appl. Surf. Sci 261, 554 (2012)

    Article  Google Scholar 

  28. D.Y. Wang, Y. Chang, Y.X. Wang, Q. Zhang, Z.G. Yang, Mater. Tech. 31, 32 (2016)

    Article  Google Scholar 

  29. Y.H. Choi, J. Lee, S.J. Kim, H.D. Yeon, Y. Byun. J. Mater. Chem. 22, 3624 (2012)

    Article  Google Scholar 

  30. Y.I. lee, Y.H. Choa, J. Mater. Chem. 22, 12517 (2012)

    Article  Google Scholar 

  31. T. Yonezawa, H. Tsukamoto, Y.Q. Yong, M.T. Nguyen, M. Matsubara, J. Mater. Chem. 6, 12048 (2016)

    Google Scholar 

  32. T.Y. Dong, H.H. Wu, C. Huang, J.M. Song, I.G. Chen, T.H. Kao, Appl. Surf. Sci. 255, 3891 (2009)

    Article  Google Scholar 

  33. D.Y. Deng, Y.R. Cheng, Y.X. Jin, T.K. Qi, F. Xiao, J. Mater. Chem. 22, 23989 (2012)

    Article  Google Scholar 

  34. D.Y. Deng, Y.R. Cheng, Y.X. Jin, T.K. Qi, F. Xiao, ACS Appl. Mater. Interfaces 5, 3839 (2013)

    Article  Google Scholar 

  35. Y. Hokita, M. Kanzaki, T. Sugiyama, R. Arakawa, H. Kawasaki, ACS Appl. Mater. Interfaces 7, 19382 (2015)

    Article  Google Scholar 

  36. D.H. Shin, S. Woo, H. Yem, M. Cha, S. Cho, M. Kang, S. Jeong, Y. Kim, K. Kang, Y. Piao, ACS Appl Mater Interfaces 6, 3312 (2014)

    Article  Google Scholar 

  37. B.Y. Wang, T.H. Yoo, Y.W. Song, D.S. Lim, Y.J. Oh, ACS Appl. Mater. Interfaces 5, 4113 (2013)

    Google Scholar 

  38. Y. Farraj, M. Grouchko, S. Magdassi. Chem. Commun. 51, 1587 (2015)

    Article  Google Scholar 

  39. Y. Tao, B. Wang, L. Wang, Y. Tai, Nanoscale Res. Lett. 8, 1 (2013)

    Article  Google Scholar 

  40. A. Yabuki, Y. Tachibana, I.W. Fathona, Mater. Chem. Phys. 148, 299 (2014)

    Article  Google Scholar 

  41. W. Yang, C. Wang, J. Mater. Chem. C 4, 7193 (2016)

    Article  Google Scholar 

  42. X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, S.R. Ruoff, Science 324, 1312 (2009)

    Article  Google Scholar 

  43. P.W. Sutter, J.I. Flege, E.A. Sutter, Nat. Mater. 7, 406 (2008)

    Article  Google Scholar 

  44. N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay, S. Wu, L.J. Li, Y. Zhao, T. Yu, H. Zhang, W. Huang, H.H. Hng, P.M. Ajayan, Q. Yan, ACS Nano 5, 2749 (2011)

    Article  Google Scholar 

  45. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H.H. Radamson, J. Mater. Sci. 26, 4347 (2015)

    Google Scholar 

  46. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z.Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’ ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3, 563 (2008)

    Article  Google Scholar 

  47. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7, 1876 (2011)

    Article  Google Scholar 

  48. X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666 (2012)

    Article  Google Scholar 

  49. L.H. Li, Y.Z. Guo, X.Y. Zhang, Y. Song, J. Mater. Chem. A 2, 19095 (2014)

    Article  Google Scholar 

  50. L.Y. Xu, G.Y. Yang, H.Y. Jing, J. Wei, Y.D. Han, Nanotechnology 25, 055201 (2014)

    Article  Google Scholar 

  51. W. Zhang, E. Bi, M. Li, L. Gao, Colloids Surf A 490, 232 (2016)

    Article  Google Scholar 

  52. J. Liu, L.B. Liu, X.W. Wu, X.K. Zhang, T.D. Li, New J. Chem. 39, 5272 (2015)

    Article  Google Scholar 

  53. W.S. Ma, J.W. Zhou, X.D. Lin, Acta Chim. Sin. 69, 1463 (2011)

    Google Scholar 

  54. M.M. Alam, W. Ji, H.N. Luitel, Y. Ozaki, T. Watari, K. Nakashima, RSC Adv. 4, 52686 (2014)

    Article  Google Scholar 

  55. Y. Wang, Y. Wang, J. Chen, H. Guo, K. Liang, K. Marcus, Q. Peng, J. Zhang, Z. Feng, Electrochim. Acta 218, 24 (2016)

    Article  Google Scholar 

  56. E. Pike, C.H. Seager, Phys. Rev. B 10, 1421 (1974)

    Article  Google Scholar 

  57. L.H. Fang, S. Bin, J.M. Qing, C.P. Wong, Proceeding of 9th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces 193 (2014)

  58. X. W. Hu, L. H. Li, S. M. Zhao, X. Leng. Adv. Mater. Res. 577, 287 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr David Watson and Dr Jim Buckman for their assistance in the surface profilometry and EDX work respectively. Graphenea is thanked for supplying rGO. Wendong Yang is supported by an EPSRC DTP studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhai Wang.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10854-017-7529-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Wang, C., Arrighi, V. et al. One step synthesis of a hybrid Ag/rGO conductive ink using a complexation–covalent bonding based approach. J Mater Sci: Mater Electron 28, 8218–8230 (2017). https://doi.org/10.1007/s10854-017-6533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6533-2

Keywords

Navigation