Optimization of photocurrent in bulk heterojunction organic solar cells using optical admittance analysis method

  • David Ompong
  • Monishka Narayan
  • Jai Singh


The optimized thicknesses of the active individual layers in organic thin film solar cells are obtained using optical admittance analysis method (OAAM). We have used OAAM to simulate the optical properties of two bulk-heterojunction (BHJ) organic solar cells (OSCs) of structures: (1) ITO/PEDOT:PSS/P3HT:PCBM/Lif/Al and (2) ITO/PTB7:PCBM/Lif/Ag. The optimal thicknesses of 75 nm and 115 nm of P3HT:PCBM and PTB7:PCBM blend layers, respectively, are obtained by maximising the absorbance in these layers through this simulation, which agree very well with the experimental results. The simulated short-circuit current density J SC is plotted as a function of the active layer thickness for a few selected thicknesses of the Al cathode in these two OSCs and it is found that J SC becomes maximum when the thickness of Al cathode is 40 nm. Using these optimised thicknesses of the active layers in these two cells the short-circuit current density is found to increase in ITO/PEDOT:PSS/P3HT:PCBM/Lif/Al BHJ OSC by 4.8% and in ITO/PTB7:PCBM/Lif/Ag by 13.3%.


Active Layer Organic Solar Cell Optimal Thickness Complex Refractive Index Active Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors would like to thank Furong Zhu for discussion on OAAM and providing the optical constants of (PEDOT:PSS), and PTB7:PCBM. David Ompong is supported by the Prestigious International Research Training Scholarship (PIRTS) and University Postgraduate Research Scholarship (UPRS) from Charles Darwin University, Northern Territory, Australia.


  1. 1.
    Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T.P. Russell, Y. Cao, Nat. Photon 9, 174 (2015)CrossRefGoogle Scholar
  2. 2.
    M.R. Narayan, J. Singh, J. Appl. Phys. 114, 073510 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Ompong, J. Singh, Eur. J. Chem. Phys. Phys. Chem. 16, 1281 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Mayer, B. Gallinet, T. Offermans, R. Ferrini, Opt. Express 24, A358 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao, L. Yu, Chem. Rev. 115, 12666 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Ompong, J. Singh, Front. Nanosci. Nanotechnol. 2, 43 (2016)CrossRefGoogle Scholar
  7. 7.
    C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Adv. Mater. 22, 3839 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Stolterfoht, A. Armin, S. Shoaee, I. Kassal, P. Burn, P. Meredith, Nat. Commun. 7, 11944 (2016)CrossRefGoogle Scholar
  9. 9.
    M.R. Narayan, J. Singh, Excitonic and photonic processes in materials. (Springer, Singapore, 2015)Google Scholar
  10. 10.
    M. Niggemann, M. Riede, A. Gombert, K. Leo, Phys. Status Solidi (a) 205, 2862 (2008).CrossRefGoogle Scholar
  11. 11.
    Z. Tang, W. Tress, O. Inganäs, Mater. Today 17, 389 (2014)CrossRefGoogle Scholar
  12. 12.
    P.G. O’Brien, N.P. Kherani, A. Chutinan, G.A. Ozin, S. John, S. Zukotynski, Adv. Mater. 20, 1577 (2008)CrossRefGoogle Scholar
  13. 13.
    W.-R. Wei, M.-L. Tsai, S.-T. Ho, S.-H. Tai, C.-R. Ho, S.-H. Tsai, C.-W. Liu, R.-J. Chung, J.-H. He, Nano Lett. 13, 3658 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Agrawal, P. Peumans, Opt. Express 16, 5385 (2008)CrossRefGoogle Scholar
  15. 15.
    J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, J.-X. Tang, Adv. Mater. 27, 1035 (2015)CrossRefGoogle Scholar
  16. 16.
    Reference Solar Spectral Irradiance: Air Mass 1.5,
  17. 17.
    H.A. Macleod, Thin-Film Optical Filters. (Taylor and Francis, Hoboken, 2010)Google Scholar
  18. 18.
    F. Zhu, Front. Optoelectron. 7, 20 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Stulik, Designing Amorphous Silicon Solar cells for their optimal photovoltaic Performance (Northern Territory University, Darwin, 1998)Google Scholar
  20. 20.
    J.A. Berning, P.H. Berning, J. Optical Soc. Am. 50, 813 (1960)CrossRefGoogle Scholar
  21. 21.
    J. Gjessing, E.S. Marstein, A. Sudbø, Opt. Express 18, 5481 (2010)CrossRefGoogle Scholar
  22. 22.
    Sopra SA Optical Data from Sopra SA,
  23. 23.
  24. 24.
    F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, Sol. Energy Mater. Sol. Cells 91, 405 (2007)CrossRefGoogle Scholar
  25. 25.
    These optical constants were made available, courtesy of Prof. Furong ZhuGoogle Scholar
  26. 26.
    Z. Kam, Q. Yang, X. Wang, B. Wu, F. Zhu, J. Zhang, J. Wu, Jishan, Org. Electron. 15, 1306 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Zheng, T. Goh, P. Fan, W. Shi, J. Yu, A.D. Taylor, Am. Chem. Soc. Appl. Mater. Interfaces 8, 15724 (2016)CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S.T. Lee, B. Sun, Energy Environ. Sci. 8, 297 (2015)CrossRefGoogle Scholar
  29. 29.
    S.F. Rowlands, J. Livingstone, C.P. Lund, Sol. Energy 76, 301 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Engineering and IT, B-Purple 12Charles Darwin UniversityDarwinAustralia

Personalised recommendations