Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging

  • Byung-Suk Lee
  • Soong-Keun Hyun
  • Jeong-Won YoonEmail author


Power electronics modules in electric vehicles and hybrid electric vehicles, particularly those containing next-generation power semiconductor devices such as silicon carbide and gallium nitride are operated at high temperatures exceeding 200 °C. Consequently, the reliability requirements for such modules have become highly stringent and new packaging materials and technologies are required to meet the demands of power electronic modules. Some good candidates for high temperature applications include high-temperature solders such as Au–20Sn, Ag or Cu sinter pastes, and transient liquid phase (TLP) bonding materials. In particular, the TLP bonding technology is suitable for use in high temperature environments owing to its low cost and simplicity of the bonding process. In this study, the feasibility of Cu–Sn and Ni–Sn TLP bonding technologies as die-attach methods for power electronics packaging applications is examined. The results of the study indicate that the Cu–Sn and Ni–Sn TLP bonding processes transform the joints fully into Cu6Sn5/Cu3Sn and Ni3Sn4 intermetallic compounds (IMCs), respectively. Further, the mechanical strength and reliability of the two TLP bonding joints are reduced owing to the formation of brittle IMCs.


Shear Strength Bonding Time Transient Liquid Phase Cu3Sn IMCs Transient Liquid Phase Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Wang, S. Jones, A. Dai, G. Liu, Microelectron. Reliab. 54, 1911–1915 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Ibrahim, J.P. Ousten, R. Lallemand, Z. Khatir, Microelectron. Reliab. 58, 204–210 (2016)CrossRefGoogle Scholar
  3. 3.
    F.P. McCluskey, M. Dash, Z. Wang, D. Huff, Microelectron. Reliab. 46, 1910–1914 (2006)CrossRefGoogle Scholar
  4. 4.
    Z. Liang, IEEE Power Electronics Society, in Proceedings of International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2012), pp. 325–331Google Scholar
  5. 5.
    C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, C. Raynaud, Mater. Sci. Eng. B 176, 283–288 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Ji, M. Li, S. Ma, M. Li, Mater. Des. 108, 590–596 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Anhock, H. Oppermann, C. Kallmayer, R. Aschenbrenner, L. Thomas, H. Reichl, in Proceedings of IEEE Electronics Manufacturing Technology Symposium (1998), pp. 156–165Google Scholar
  8. 8.
    Y.C. Liu, J.W.R. Teo, S.K. Tung, K.H. Lam, J. Alloys Compd. 448, 340–343 (2008)CrossRefGoogle Scholar
  9. 9.
    J.W. Yoon, H.S. Chun, S.B. Jung, J. Alloys Compd. 469, 108–115 (2009)CrossRefGoogle Scholar
  10. 10.
    G.S. Matijasevic, C.C. Lee, C.Y. Wang, Thin Solid Films 223, 276–287 (1993)CrossRefGoogle Scholar
  11. 11.
    C. Gobl, J. Faltenbacher, in Proceedings of the 6th International Conference on IEEE Integrated Power Electronics Systems (CIPS) (2010), pp. 1–5Google Scholar
  12. 12.
    T.G. Lei, J.N. Calata, G.Q.L.X. Chen, S. Luo, IEEE Trans. Comp. Pack. Technol. 33, 98–104 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Knoerr, A. Schletz, in Proceedings of the 6th International Conference on IEEE Integrated Power Electronics Systems (CIPS) (2010), pp. 1–6Google Scholar
  14. 14.
    S.W. Yoon, M.D. Glover, K. Shiozaki, IEEE Trans. Power Electron 28, 2448–2456 (2013)CrossRefGoogle Scholar
  15. 15.
    T.A. Tollefsen, A. Larsson, O.M. Lovvik, K.E. Aasmundtveit, IEEE Trans. Compon. Pack. Manuf. Technol. 3, 904–914 (2013)CrossRefGoogle Scholar
  16. 16.
    S.W. Yoon, K. Shiozaki, S. Yasuda, M.D. Glover, in Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC) (2012), pp. 478–482Google Scholar
  17. 17.
    ASTM D1002-10, Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (Metal-to-Metal), ASTM International, West Conshohocken, PA (2010)Google Scholar
  18. 18.
    J.W. Yoon, S.B. Jung, J. Alloys Compd. 376, 105–110 (2004)CrossRefGoogle Scholar
  19. 19.
    K. Zeng, K.N. Tu, Mater. Sci. Eng. R 38, 55–105 (2002)CrossRefGoogle Scholar
  20. 20.
    H.S. Chun, J.W. Yoon, S.B. Jung, J. Alloys Compd. 439, 91–96 (2007)CrossRefGoogle Scholar
  21. 21.
    H.B. Kang, J.H. Bae, J.W. Yoon, S.B. Jung, J.W. Park, C.W. Yang, Scripta Mater. 63, 1108–1111 (2010)CrossRefGoogle Scholar
  22. 22.
    J.W. Yoon, S.W. Kim, S.B. Jung, Mater. Trans. 45, 727–733 (2004)CrossRefGoogle Scholar
  23. 23.
    Y.C. Chan, A.C.K. So, J.K.L. Lai, Mater. Sci. Eng. B 55, 5–13 (1998)CrossRefGoogle Scholar
  24. 24.
    P.L. Tu, Y.C. Chan, K.C. Hung, J.K.L. Lai, Scripta Mater. 44, 317–323 (2001)CrossRefGoogle Scholar
  25. 25.
    R.E. Pratt, E.I. Stromswold, D.J. Quesnel, IEEE Trans. Compon. Pack. Manuf. Technol 19, 134–141 (1996)CrossRefGoogle Scholar
  26. 26.
    C.C. Lee, P.J. Wang, J.S. Kim, in Proceedings of the 57th International Conference on Electronic Components and Technology Conference (ECTC) (2007), pp. 648–652Google Scholar
  27. 27.
    N. Hoivik, H. Liu, K. Wang, G. Salomonsen, K. Aasmundtveit, in Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators, ed. by E. Gusev, E. Garfunkel, A. Dideikin (Springer, Dordrecht, 2010), p. 189Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Byung-Suk Lee
    • 1
    • 2
  • Soong-Keun Hyun
    • 2
  • Jeong-Won Yoon
    • 1
    • 3
    Email author
  1. 1.Welding and Joining R&D GroupKorea Institute of Industrial Technology (KITECH)IncheonSouth Korea
  2. 2.Department of Metallurgical EngineeringInha UniversityIncheonSouth Korea
  3. 3.Critical Materials and Semiconductor Packaging EngineeringUniversity of Science and Technology (UST)DaejeonSouth Korea

Personalised recommendations