Dissociation of charge transfer excitons at the donor–acceptor interface in bulk heterojunction organic solar cells

  • Jai Singh
  • Monishka Narayan
  • David Ompong
  • Furong Zhu


It is emphasized that the formation of charge transfer (CT) excitons in bulk heterojunction (BHJ) organic solar cells (OSCs) does not automatically lead to the dissociation of excitons and generation of charge carriers due to the built-in electric field created by the difference in the work functions of the electrodes. Like Frenkel excitons, CT excitons are also charge neutral excited entities and cannot be efficiently dissociated by such electric field. A condition of the dissociation of CT excitons is proposed and used to derive the rates of exciton dissociation in BHJ OSCs. Results are calculated and compared with experiments for the BHJ OSC of PTB7: PC71BM and found to agree very well qualitatively.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Power Conversion Efficiency Organic Solar Cell Lower Unoccupied Molecular Orbital Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, Nat. Photonics, 6, 591(2012)Google Scholar
  2. 2.
    L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao and L. Yu, Chem. Revs. 115, 12666 (2015)CrossRefGoogle Scholar
  3. 3.
    R.F. Service, Science 332(6027), 293 (2011)CrossRefGoogle Scholar
  4. 4.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. 22, 701 (2014)CrossRefGoogle Scholar
  5. 5.
    M.R. Narayan, J. Singh, J. Appl. Phys 114, 073510 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Devizis, J.D. Jonghe-Risse, R. Hang, F. Nȕesch, S. Jenatsch, V. Gulbinas, J.-E. Moser, J. Am. Chem. Soc. 137, 8192 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Wright and A. Uddin, Solar Energy Mater. Solar Cells 107, 87 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Peumas, A. Yakimov, S.R. Forest, J. Appl. Phys. 93, 3393 (2003)Google Scholar
  9. 9.
    C. Deibel, T. Strobel, V. Dyakonov, Phys. Rev. Lett. 103, 036402 (2009)CrossRefGoogle Scholar
  10. 10.
    C. Deibel, T. Strobel and V. Dyakonov, Adv. Mat. 22, 4097 (2010)CrossRefGoogle Scholar
  11. 11.
    M.T. Lloyd, Y.F. Lim, G.G. Malliaras, Appl. Phys. Lett. 92, 143308 (2008)CrossRefGoogle Scholar
  12. 12.
    C. Deibel, V. Dyakonov and C. J. Brabec, IEEE J. Sel. Top. Quantum Elect. 16, 1517 (2010)CrossRefGoogle Scholar
  13. 13.
    C.J. Brabec, G. Zerja, G. Cerullo, S.D. Silvestri, S. Luzzati, J.C. Hummelen, S. Sariciftei, Chem. Phys. Lett. 340, 232 (2001)CrossRefGoogle Scholar
  14. 14.
    V.D. Mihailetchi, L.J.A. Koster, J.C. Hummelen, P.W.M. Blom, Phys. Rev. Lett. 93, 216601 (2004)CrossRefGoogle Scholar
  15. 15.
    M.C. Scharbar and N.C. Sariciftci, Prog. Polymer Sci. 38, 1929 (2013)CrossRefGoogle Scholar
  16. 16.
    T.M. Burk, M.D. McGehee, Adv. Mater. 26, 1923 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Koppe, H.-J. Egelhaaf, G. Dennler, M.C. Scharbar, C.J. Brabec, P. Schilinsky, C.N. Hoth, Adv. Funct. Mater. 20, 338 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Honda, T. Nogami, H. Okhita, H. Benten, S. Ito, ACS Appl. Mater. Interfaces 1, 804 (2009)CrossRefGoogle Scholar
  19. 19.
    M.G. Helander, Z.B. Wang, J. Qiu, M.T. Greiner, D.P. Puzzo, Z.W. Liu, Z.H. Lu, Science 332, 944 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Engineering and Information TechnologyCharles Darwin UniversityDarwinAustralia
  2. 2.Department of Physics, Institute of Advanced Materials and Institute of Research and Continuing Education (Shenzhen)Hong Kong Baptist UniversityHong KongChina

Personalised recommendations