Influence of RF power on the opto-electrical and structural properties of gallium-doped zinc oxide thin films

  • N. AkinEmail author
  • B. Kinaci
  • Y. Ozen
  • S. Ozcelik


GZO thin films were succesfully deposited onto n-Si and glass substrates by RF magnetron sputtering at room temperature. The structural, morphological and opto-electrical properties of the films were investigated in terms of RF power, using various methods such as XRD, AFM, SEM, EDX, XPS, SIMS, UV–Vis–NIR spectroscopy and Hall effect measurements. The achieved results revealed that the all films have highly c-axis (002) oriented polycrystalline structure with high transmittance in Vis and high reflectance in NIR region as well as good conductivity. Meanwhile, surface of the films was uniform, compact and crack-free. With incerasing of RF power, it was seen that crystallinity of the films improved and the grain size became larger. It was also observed that optical band gap of the films was increased to the order of 0.15 eV as well as decreasing the resistivity to the order of 6.38 Ω cm with increasing RF power from 100 to 200 W. Deposited film at 200 W, which can be optimum sputtering power for coating GZO films, having high concentration of free electrons and lowest resistivity exhibited the highest IR reflectivity (~55%) in NIR region. In addition, deposited GZO films at this power have larger particle size and highly optical transmittance (~87%) in visible region. Obtained both of optical and electrical results suggested that the deposited GZO films can be used in low thermal emissivity coating for energy efficient glass and the UV-blocking layer as well as transparent conductive oxide electrode for flexible opto-electronic devices.


Ga2O3 Surface Elemental Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Development Ministry of Turkey under the project number of 2011K120290.


  1. 1.
    S.S. Shinde, P.S. Shinde, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Appl. Surf. Sci. 258, 9969 (2012)CrossRefGoogle Scholar
  2. 2.
    I. Hotovy, S. Hascik, M. Gregor, V. Rehacek, M. Predanocy, A. Plecenik, Vacuum 107, 20 (2014)CrossRefGoogle Scholar
  3. 3.
    U. Ozgur, Ya..I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  4. 4.
    C.G. Granqvist, Sol. Energy Mater. Sol. Cells. 91, 1529 (2007)CrossRefGoogle Scholar
  5. 5.
    S. Chen, M.E.A. Warwick, R. Binions, Sol. Energy Mater. Sol. Cells. 137, 202 (2015)CrossRefGoogle Scholar
  6. 6.
    J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Nat. Mater. 10, 361 (2011)CrossRefGoogle Scholar
  7. 7.
    A. El Manouni, F.J. Manjon, M. Perales, M. Mollar, B. Mari, M.C. Lopezc, J.R. Ramos Barradoc, Superlatt. Microstruct. 42, 134 (2007)CrossRefGoogle Scholar
  8. 8.
    Z.Z. You, G.J. Hua, J. Alloys Compd. 530, 11 (2012)CrossRefGoogle Scholar
  9. 9.
    D.L. Zhu, Q. Wang, S. Han, P.J. Cao, W.J. Liu, F. Jia, Y.X. Zeng, X.C. Ma, Y.M. Lu, Appl. Surf. Sci. 298, 208 (2014)CrossRefGoogle Scholar
  10. 10.
    H.L. Hsu, C.B. Yang, C.H. Huang, C.Y. Hsu, J. Mater. Sci. 24, 13 (2013)Google Scholar
  11. 11.
    V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M.E.V. Costa, R. Martins, Thin Solid Films. 427, 401 (2003)CrossRefGoogle Scholar
  12. 12.
    J. Sun, F.J. Liu, H.Q. Huang, J.W. Zhao, Z.F. Hu, X.Q. Zhang, Y.S. Wang, Appl. Surf. Sci. 257, 921 (2010)CrossRefGoogle Scholar
  13. 13.
    W.T. Yen, Y.C. Lin, P.C. Yao, J.H. Ke, Y.L. Chen, Appl. Surf. Sci. 256, 3432 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Kim, W.I. Lee, E.H. Lee, S.K. Hwang, C. Lee, J. Mater. Sci. 42, 4845 (2007)CrossRefGoogle Scholar
  15. 15.
    K.T.R. Reddy, T.B.S. Reddy, I. Forbes, R.W. Miles, Surf. Coat. Technol. 110, 151 (2002)Google Scholar
  16. 16.
    H. Jung, D. Kim, H. Kim, Appl. Surf. Sci. 297, 125 (2014)CrossRefGoogle Scholar
  17. 17.
    H.H. Shin, Y.H. Joung, S.J. Kang, J. Mater. Sci. 20, 704 (2009)Google Scholar
  18. 18.
    C.Y. Tsay, C.W. Wu, C.M. Lei, F.Sh.. Chen, C.K. Lin, Thin Solid Films. 519, 1516 (2010)CrossRefGoogle Scholar
  19. 19.
    W.J. Maeng, J.S. Park, J. Electroceram. 31, 338 (2013)CrossRefGoogle Scholar
  20. 20.
    N. Akin, U.C. Baskose, B. Kinaci, M. Cakmak, S. Ozcelik, Appl. Phys. A. 119, 965 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, J. Cryst. Growth. 274, 474 (2005)CrossRefGoogle Scholar
  22. 22.
    Q.B. Ma, Z.Z. Ye, H.P. He, J.R. Wang, L.P. Zhu, B.H. Zhao, Mater. Charact. 59, 124 (2008)CrossRefGoogle Scholar
  23. 23.
    E. Fortunato, L. Raniero, L. Silva, A. Goncalves, A. Pimentel, P. Barquinha, H. Aguas, L. Pereira, G. Goncalves, I. Ferreira, E. Elangovan, R. Martins, Sol. Energy Mater. Sol. Cells. 92, 1605 (2008)CrossRefGoogle Scholar
  24. 24.
    N. Akin, Y. Ozen, H.I. Efkere, M. Cakmak, S. Ozcelik, Surf. Interface Anal. 47, 93 (2015)CrossRefGoogle Scholar
  25. 25.
    H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures. (Wiley, New York, 1974)Google Scholar
  26. 26.
    T.P. Rao, M.C.S. Kumar, A. Safarulla, V. Ganesan, S.R. Barman, C. Sanjeeviraja, Physica B 405, 2226 (2010)CrossRefGoogle Scholar
  27. 27.
    R.G. Waykar, A.S. Pawbake, R.R. Kulkarni et al., J. Mater. Sci. 27, 1134 (2016)Google Scholar
  28. 28.
    Q.B. Ma, Z.Z. Ye, H.P. He, S.H. Hu, J.R. Wang, L.P. Zhu, Y.Z. Zang, B.H. Zhao, J. Cryst. Growth. 304, 64 (2007)CrossRefGoogle Scholar
  29. 29.
    T.P. Rao, M.C.S. Kumar, J. Alloys Compd. 506, 788 (2010)CrossRefGoogle Scholar
  30. 30.
    Y.J. Par, H.N. Kim, H.H. Shin, Appl. Surf. Sci. 255, 7532 (2009)CrossRefGoogle Scholar
  31. 31.
    F. Wu, L. Fang, Y.J. Pan, K. Zhou, L.P. Peng, Q.L. Huang, C.Y. Kong, Appl. Surf. Sci. 255, 8855 (2009)CrossRefGoogle Scholar
  32. 32.
    U. Ozgur, D. Hofstetter, H. Morkoc, Proc. IEEE. 98, 1255 (2010)CrossRefGoogle Scholar
  33. 33.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Ceram. Int. 42, 10066 (2016)CrossRefGoogle Scholar
  34. 34.
    L. Richard Burden, J. Douglas, Faires Numerical Analysis, (7th Ed), Brooks/Cole. ISBN 0-534-38216-9 (2000)Google Scholar
  35. 35.
    K.G. Saw, N.M. Aznan, F.K. Yam, S.S. Ng, S.Y. Pung, PLoS ONE 10(10):e0141180. doi: 10.1371/journal.pone.0141180 (2015)CrossRefGoogle Scholar
  36. 36.
    Y. Okuhara, T. Kato, H. Matsubara, N. Isu, M. Takata, Thin Solid Films. 519, 2280 (2011)CrossRefGoogle Scholar
  37. 37.
    S.A. Lee, H. Jeong, S. Woo, J.Y. Hwang, S.Y. Choi, S.D. Kim, M. Choi, S. Roh, H. Yu, J. Hwang, S.W. Kim, W.S. Choi, Sci. Rep. 6, 23649 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Photonics Application and Research CenterGazi UniversityAnkaraTurkey
  2. 2.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey
  3. 3.Department of Physics, Faculty of ScienceIstanbul UniversityIstanbulTurkey

Personalised recommendations