Green photoluminescence in Tb3+-doped ZrO2 nanotube arrays

  • Ning Fu
  • Xixin Wang
  • Limin Guo
  • Jianling ZhaoEmail author
  • Xinghua Zhang
  • Jing Lin
  • Liyuan Gong
  • Mingli Wang
  • Yang YangEmail author


Tb3+-doped ZrO2 nanotube arrays were fabricated by anodizing Zr–Tb (3 at.% Tb) alloy, which was prepared through a powder metallurgical method. The effects of electrolyte and annealing temperature on the morphologies, structures, photoluminescence properties and decay times of the nanotube arrays were studied. The nanotubes prepared from aqueous electrolyte is of tetragonal ZrO2, while the nanotubes prepared from organic electrolyte (formamide and glycerol) is of amorphous structure that can be converted to monoclinic ZrO2 after annealing at 600 °C. Under an excitation wavelength of 263 nm, the nanotubes annealed at 400 °C display a strong photoluminescence emission at 544 nm which is associated with 5D47F5 transitions of Tb3+. The tetragonal ZrO2 in the nanotubes was revealed to be beneficial for the improvement of the luminous efficiency and decay time.


Emission Intensity Fluorescence Lifetime Excitation Intensity Increase Annealing Temperature Organic Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by National Natural Science Foundation of China (51272064), Natural Science Foundation of Hebei Province of China (E2013202032), the Talent Training Project of Hebei Province (2013) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT13060). This work was financially supported by the University of Central Florida through a startup Grant (No. 20080741).

Supplementary material

10854_2017_6407_MOESM1_ESM.doc (694 kb)
Supplementary material 1 (DOC 694 KB)


  1. 1.
    L.H. Chen, D.W. McBranch, H.L. Wang, R. Helgeson, F. Wudl, D.G. Whitten, Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc. Natl. Acad. Sci. U.S.A. 96, 1228712292 (1999)CrossRefGoogle Scholar
  2. 2.
    L.H. Chen, S. Xu, D. McBranch, D. Whitten, Tuning the properties of conjugated polyelectrolytes through surfactant complexation. J. Am. Chem. Soc. 122, 93029303 (2000)CrossRefGoogle Scholar
  3. 3.
    V.H. Romero; Rosa, E. De. La.; T. Lopez-Luke, P. Salas, C. Angeles-Chavez, Brilliant blue, green and orange–red emission band on Tm3+-, Tb3+- and Eu3+-doped ZrO2nanocrystals. J. Phys. D. 43, 465105 (2010)CrossRefGoogle Scholar
  4. 4.
    H.J. Lozykowski, W.M. Jadwisienczak, I. Brown, Photoluminescence and cathodoluminescence of GaN doped with Tb. Appl. Phys. Lett. 76, 861–863 (2000)CrossRefGoogle Scholar
  5. 5.
    J.F. Liu, Y.D. Li, Synthesis and Self-Assembly of Luminescent Ln3+-Doped LaVO4 Uniform Nanocrystals. Adv. Mater. 19, 1118–1122 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Lin, Y. Huang, J. Mi, X.H. Zhang, Z.M. Lu, X.W. Xu, Y. Fan, J. Zou, C.C. Tang, BN-coated Ca1–xSrxS: Eu solid-solution nanowires with tunnable red light emission. Nanotechnology 24, 405701 (2013)CrossRefGoogle Scholar
  7. 7.
    W.M. Jadwisienczak, H.J. Lozykowski, F. Perjeru, H. Chen, M. Kordesch, I.G. Brown, Luminescence of Tb ions implanted into amorphous AlN thin films grown by sputtering. Appl. Phys. Lett. 76, 3376–3378 (2000)CrossRefGoogle Scholar
  8. 8.
    M. Sekita, Y. Miyazawa, S. Morita, H. Sekiwa, Y. Sato, Strong Tb3+ emission of TbAlO3 at room temperature. Appl. Phys. Lett. 65, 2380–2382 (1994)CrossRefGoogle Scholar
  9. 9.
    L.Y. Zhou, J.S. Wei, J.X. Shi, M.L. Gong, H.B. Liang, A novel green phosphor GdCaAlO4:Tb3+ for PDP application. J. Lumin. 128, 1262–1266 (2008)CrossRefGoogle Scholar
  10. 10.
    B. Marí, K.C. Singh, M. Sahal, S.P. Khatkar, V.B. Taxak, M. Kumar, Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors. J. Lumin. 130, 2128–2132 (2010)CrossRefGoogle Scholar
  11. 11.
    Y.Y. Choi, K.S. Sohn, H.D. Park, S.Y. Choi, Luminescence and decay behaviors of Tb-doped yttrium silicate. Mater. Res. Soc. 16, 881–889 (2001)CrossRefGoogle Scholar
  12. 12.
    G.A. Sotiriou, M. Schneider, S.E. Pratsinis, Green, silica-coated monoclinic Y2O3:Tb3+ nanophosphors: flame synthesis and characterization. J. Phys. Chem. C 116, 4493–4499 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Al-Khatatbeh, K.K.M. Lee, B. Kiefer, Phase relations and hardness trends of ZrO2 phases at high pressure. Phys. Rev. B 81, 2376–2380 (2010)CrossRefGoogle Scholar
  14. 14.
    L.N. Wang, J.L. Luo, Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method. Mater. Sci. Eng. C 31, 748–754 (2011)CrossRefGoogle Scholar
  15. 15.
    C.K. Lin, C.M. Zhang, J. Lin, Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the pechini-type sol–gel process. J. Phys. Chem. C 111, 3300–3307 (2007)CrossRefGoogle Scholar
  16. 16.
    E.M. Kock, M. Kogler, T. Bielz, B. Klotzer, S. Penner, In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2. J. Phys. Chem. C 117, 17666–17673 (2013)CrossRefGoogle Scholar
  17. 17.
    Y.S. Vidya, K.S. Anantharaju, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa, S. C. Prashantha, C. Shivakumara, Combustion synthesized tetragonal ZrO2: Eu3+ nanophosphors: structural and photoluminescence studies. Spectrochim. Acta Part A 135, 241–251 (2015)CrossRefGoogle Scholar
  18. 18.
    H.W. Zhang, X.Y. Fu, S.Y. Niu, Q. Xin, Blue emission of ZrO2:Tm nanocrystals with different crystal structure under UV excitation. J. NonCryst. Solids 354, 1559–1563 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Garcia-Hipolito, R. Martinez, O. Alvarez-Fregoso, E. Martineza, C. Falcony, Cathodoluminescent and photoluminescent properties of terbium doped ZrO2 films prepared by pneumatic spray pyrolysis technique. J. Lumin. 93, 9–15 (2001)CrossRefGoogle Scholar
  20. 20.
    J.A. Capobianco, F. Vetrone, T. DÏAlesio, G. Tessari, A. Speghini, M. Bettinelli, Optical spectroscopy of nanocrystalline cubic Y2O3: Er3+ obtained by combustion synthesis. Phys. Chem. Chem. Phys. 2, 3203–3207 (2000)CrossRefGoogle Scholar
  21. 21.
    S. Mukherjee, V. Sudarsan, R.K. Vatsa, S.V. Godbole, R.M. Kadam, U.M. Bhatta, A.K. Tyagi, Effect of structure, particle size and relative concentration of Eu3+ and Tb3+ ions on the luminescence properties of Eu3+ co-doped Y2O3: Tb nanoparticles. Nanotechnology 19, 325704 (2008)CrossRefGoogle Scholar
  22. 22.
    M.K. Devaraju, S. Yin, T. Sato, A rapid hydrothermal synthesis of rare earth oxide activated Y(OH)3 and Y2O3 nanotubes. Nanotechnology 20, 305302 (2009)CrossRefGoogle Scholar
  23. 23.
    L.N. Wang, J.L. Luo, Electrochemical behaviour of anodic zirconium oxide nanotubes in simulated body fluid. Appl. Surf. Sci. 258, 4830–4833 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Wei, X.X. Wang, Q.G. Tang, G. Mei, J.L. Zhao, Reinforcement of denture base PMMA with ZrO2 nanotubes. J. Mech. Behav. Biomed. 32, 192–197 (2014)CrossRefGoogle Scholar
  25. 25.
    L.N. Wang, J.L. Luo, Enhancing the bioactivity of zirconium with the coating of anodized ZrO2 nanotubular arrays prepared in phosphate containing electrolyte. Electrochem. Commun. 12, 1559–1562 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Stojadinovic, R. Vasilic, M. Petkovic, I. Belca, B. Kasalica, M. Peric, Lj Zekovic,, Luminescence during the anodization of zirconium. Electrochim. Acta 79, 133–140 (2012)CrossRefGoogle Scholar
  27. 27.
    X.X. Wang, J.L. Zhao, P. Du, L.M. Guo, X.W. Xu, C.C. Tang, The photoluminescence properties of Er3+-doped ZrO2 nanotube arrays prepared by anodization. Mater. Res. Bull. 47, 3916–3919 (2012)CrossRefGoogle Scholar
  28. 28.
    M.L. Wang, X.X. Wang, J. Lin, X.W. Ning, X.J. Yang, X.H. Zhang, J.L. Zhao, Preparation and photoluminescence properties of Eu3+-doped ZrO2 nanotube arrays. Ceram. Int. 41, 8444–8450 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Ismail, Z.A. Ahmad, A. Berenov, Z. Lockman, Effect of applied voltage and fluoride ion content on the formation of zirconia nanotube arrays by anodic oxidation of zirconium. Corros. Sci. 53, 1156–1164 (2011)CrossRefGoogle Scholar
  30. 30.
    J.Y. Zhou, D.F. Song, H. Zhao, X.J. Pan, Z.X. Zhang, Y.Z. Mao, Y.J. Fu, T. Wang, E.Q. Xie, Microstructural and photoluminescent properties of terbium-doped SiC nanotubes prepared by sputtering using electrospun polymer templates. J. Lumin. 157, 119–125 (2015)CrossRefGoogle Scholar
  31. 31.
    R. Srinivasan, B.H. Davis, Influence of zirconium salt precursors on the crystal structures of zirconia. Catal. Lett. 14, 165–170 (1992)CrossRefGoogle Scholar
  32. 32.
    B.E. Yoldas, Zirconium oxides formed by hydrolytic condensation of aikoxides and parameters that affect their morphology. J. Mater. Sci. 21, 1080–1086 (1986)CrossRefGoogle Scholar
  33. 33.
    G.R. Li, X.H. Lu, C.Y. Su, Y.X. Tong, Facile synthesis of hierarchical ZnO:Tb3+ nanorod bundles and their optical and magnetic properties. J. Phys. Chem. C 112, 2927–2933 (2008)CrossRefGoogle Scholar
  34. 34.
    K. Kuratani, M. Mizuhata, A. Kajinami, S. Deki, Synthesis and luminescence property of Eu3+/ZrO2 thin film by the liquid phase deposition method. J. Alloys Compd. 408, 711–716 (2006)CrossRefGoogle Scholar
  35. 35.
    F. Ramos-Brito, M. Garcia-Hipolito, R. Martinez-Martinez, E. Martinez-Sanchez, C. Falcony, Preparation and characterization of photoluminescent praseodymium-doped ZrO2 nanostructured powders. J. Phys. D. 37, L1–L4 (2004)CrossRefGoogle Scholar
  36. 36.
    Wakefield G., Keron H. A.; Dobson P. J.; Hutchison J. L. Structural and optical properties of terbium oxide nanoparticles. J. Phys. Chem. Solids 1999, 60, 503–508.Google Scholar
  37. 37.
    Y.Z. Xie, Z.W. Ma, L.X. Liu, Y.R. Su, H.T. Zhao, Y.X. Liu, Z.X. Zhang, H.G. Duan, J. Li, E.Q. Xie, Oxygen defects-modulated green photoluminescence of Tb-doped ZrO2 nanofibers. Appl. Phys. Lett. 2010, 97, 141916CrossRefGoogle Scholar
  38. 38.
    M. Zawadzki, D. Hreniak, J. Wrzyszcz, W. Mista, H. Grabowska, O.L. Malta, W. Strezk, Photoluminescence and cathodoluminescence of Tb-dopedAl2O3-ZrO2 nanostructures obtained by sol–gel method. Chem. Phys. 291, 275–285 (2003)CrossRefGoogle Scholar
  39. 39.
    M.M. Shang, G.G. Li, X.J. Kang, D.M. Yang, D.L. Geng, J. Lin, Tunable luminescence and energy transfer properties of Sr3AlO4F: RE3+ (RE = Tm/Tb, Eu, Ce) phosphors. ACS Appl. Mater. Interfaces 3, 2738–2746 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHebei University of TechnologyTianjinChina
  2. 2.Nanoscience Technology CenterUniversity of Central FloridaOrlandoUSA
  3. 3.Department of Materials Science and EngineeringUniversity of Central FloridaOrlandoUSA

Personalised recommendations