Photovoltaic contribution of photo-generated excitons in acceptor material of organic solar cells

Article

Abstract

Contribution of exciton generation in acceptor material to the photovoltaic performance of three bulk-heterojunction organic solar cells (BHJ OSCs), PTB7:PC71BM, P3HT:ICBA and P3HT:PC61BM are studied. Singlet and triplet rates of absorption and dissociation and diffusion lengths are calculated and compared with those when excitons are generated in the donor of these BHJ OSCs. It is found that the rates of absorption and dissociation and diffusion lengths are comparable whether excitons are generated in donor or acceptor of these BHJ OSCs. Therefore, it is proposed that the contribution of exciton generation in acceptor may not be negligible.

Notes

Acknowledgements

Authors are indebted to Professors Richard Williams and Andrey Vasiliev for very useful e-mail discussions during the course of revision of this manuscript.

References

  1. 1.
    M. Narayan, J. Singh, Nanosci. Technol. 1, 1–8 (2014)Google Scholar
  2. 2.
    M. Narayan, J. Singh, Excitonic and Photonic Processes in Materials. (Springer, New York, 2015)Google Scholar
  3. 3.
    L. Huo, T. Liu, X. Sun, Y. Cai, A.J. Heeger, Y. Sun, Adv. Mater 27, 2938–2944 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Subbiah, B. Purushothaman, M. Chen, T. Qin, M. Gao, D. Vak, F. Scholes, X. Chen, S.E. Watkins, G.J. Wilson, Adv. Mater 27, 702–705 (2015)CrossRefGoogle Scholar
  5. 5.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. 23,1–9. (2015)CrossRefGoogle Scholar
  6. 6.
    Y.M. Yang, W. Chen, L. Dou, W. Chang, H. Duan, B. Bob, G. Li, Y. Yang. Nat. Photonics 9, 190–198 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Narayan, J. Singh, J. Appl. Phys 114, 154515-1-15415-7 (2013)Google Scholar
  8. 8.
    M. Narayan, J. Singh, Eur. Phys. J. B 86, 47–51 (2013)CrossRefGoogle Scholar
  9. 9.
    J. Singh, M. Narayan, D. Ompong, J. Phys 619, 012030–012036 (2015)Google Scholar
  10. 10.
    M. Narayan, J. Singh, Phys. Status Solidi C 9, 2386–2389 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Narayan, J. Singh, Can. J. Phys. 92, 853–856 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Deibel, T. Strobel, V. Dyakonov, Adv. Mater 22, 4097–4111 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Günes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324–1338 (2007)CrossRefGoogle Scholar
  14. 14.
    D. Veldman, S.C. Meskers, R.A. Janssen, Adv. Funct. Mater 19, 1939–1948 (2009)CrossRefGoogle Scholar
  15. 15.
    T.M. Clarke, J.R. Durrant, Chem. Rev 110, 6736–6767 (2010)CrossRefGoogle Scholar
  16. 16.
    R. Shivanna, S. Shoaee, S. Dimitrov, S.K. Kandappa, S. Rajaram, J.R. Durrant, K.S. Narayan, Energy Environ. Sci. 7, 435–441 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Devižis, J. Jonghe-Risse, R. Hany, F. Nüesch, S. Jenatsch, V. Gulbinas, J. Moser, J. Am. Chem. Soc. 137, 8192–8198 (2015)CrossRefGoogle Scholar
  18. 18.
    K. Cnops, B.P. Rand, D. Cheyns, B. Verreet, M.A. Empl, P. Heremans, Nat. Commun. 5, 1–6 (2014)CrossRefGoogle Scholar
  19. 19.
    W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, J. Hou, Adv. Mater 28, 4734–4739 (2016)CrossRefGoogle Scholar
  20. 20.
    C.L. Chochos, N. Tagmatarchis, V.G. Gregoriou, RSC Adv. 3, 7160–7181 (2013)CrossRefGoogle Scholar
  21. 21.
    L.A. Pettersson, L.S. Roman, O. Inganäs, J. Appl. Phys 86, 487–496 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, L. Gang, R. Claire, L. Yu. Adv. Mater 22, E135–E138 (2010)CrossRefGoogle Scholar
  23. 23.
    K. Yonezawa, H. Kamioka, T. Yasuda, L. Han, Y. Moritomo, Jpn. J. Appl. Phys. 52, 062405 (2013)CrossRefGoogle Scholar
  24. 24.
    P.C. Dastoor, C.R. McNeill, H. Frohne, C. Foster, D. Benjamin, F. Christopher, W.J. Belcher, W. Campbell, D. Officer, I.M. Blake, P. Thordarson, M. Crossley, S.H. Hush, J.R. Reimers, J. Phys. Chem. C 111, 15415–15426 (2007)CrossRefGoogle Scholar
  25. 25.
    N.C. Nicolaidis, B.S. Routley, J.L. Holdsworth, W.J. Belcher, X. Zhou, P.C. Dastoor, J. Phys. Chem. C 115, 7801–7805 (2011)CrossRefGoogle Scholar
  26. 26.
    V. Mihailetchi, L. Koster, J. Hummelen, P. Blom, Phys. Rev. Lett. 93, 216601-1-216601-4 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Narayan, J. Singh, J. Appl. Phys. 114, 073510-1-073510-7 (2013)Google Scholar
  28. 28.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 6, 591–595 (2012)Google Scholar
  29. 29.
    X. Zhou, X. Fan, X. Sun, Y. Zhang, Z. Zhu, Nanoscale Res. Lett. 10, 1–8 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Zhao, Y. He, Y. Li, Adv. Mater 22, 4355–4358 (2010)CrossRefGoogle Scholar
  31. 31.
    H. Xu, H. Ohkita, H. Benten, S. Ito. Jpn. J. Appl. Phys 53, 01AB10 (2013)CrossRefGoogle Scholar
  32. 32.
    P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, Sol. Energ. Mat. Sol. Cells 90, 2150–2158 (2006)CrossRefGoogle Scholar
  33. 33.
    Y. He, H. Chen, J. Hou, Y. Li, J. Am. Chem. Soc. 132, 1377–1382 (2010)CrossRefGoogle Scholar
  34. 34.
    Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Nat. Commun. 5, 1–8 (2014)Google Scholar
  35. 35.
    A. Hebard, R. Haddon, R. Fleming, A. Kortan, Appl. Phys. Lett. 59, 2109–2111 (1991)CrossRefGoogle Scholar
  36. 36.
    A.J. Ward, A. Ruseckas, M.M. Kareem, B. Ebenhoch, L.A. Serrano, M. Al-Eid, B. Fitzpatrick, V.M. Rotello, G. Cooke, D.W. Samuel, Adv. Mater 27, 2496–2500 (2015)CrossRefGoogle Scholar
  37. 37.
    G.J. Hedley, A.J. Ward, A. Alekseev, C.T. Howells, E.R. Martins, L.A. Serrano, G. Cooke, A. Ruseckas, I.D. Samuel, Nat. Commun. 4, 1–10 (2013)CrossRefGoogle Scholar
  38. 38.
    Y.-X. Liu, M.A. Summers, S.R. Scully, M.D. McGehee, J. Appl. Phys 99, 93521–93521 (2006)CrossRefGoogle Scholar
  39. 39.
    Q. An, F. Zhang, J. Zhang, W. Tang, Z. Deng, B. Hu, Energ. Environ. Sci. 9, 281–322 (2016)CrossRefGoogle Scholar
  40. 40.
    V. Gupta, V. Bharti, M. Kumar, S. Chand, A.J. Heeger, Adv. Mater 27, 4398–4404 (2015)CrossRefGoogle Scholar
  41. 41.
    T. Ameri, T. Heumüller, J. Min, N. Li, G. Matt, U. Scherf, C.J. Brabec, Energy Environ. Sci. 6, 1796–1801 (2013)CrossRefGoogle Scholar
  42. 42.
    T.V. Pho, F.M. Toma, B.J.T. Villers, S. Wang, N.D. Treat, N.D. Eisenmenger, G.M. Su, R.C. Coffin, J.D. Douglas, J.M.J. Fréchet, G.C. Bazan, F. Wudl, M.L. Chabinyc, Adv. Energy Mater,. 4, 1301007-1-1301007-7 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Das, T. Alford, J. Appl. Phys 116, 044905–044905 (2014)CrossRefGoogle Scholar
  44. 44.
    K. Leong, M.E. Foster, B.M. Wong, E.D. Spoerke, D. Van Gough, J.C. Deaton, M.D. Allendorf, J. Mater. Chem. A 2, 3389–3398 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Cook, A. Furube, R. Katoh, L. Han, Chem. Phys. Lett. 478, 33–36 (2009)CrossRefGoogle Scholar
  46. 46.
    P. Peumans, A. Yakimov, S.R. Forrest, J. Appl. Phys 93, 3693–3723 (2003)CrossRefGoogle Scholar
  47. 47.
    C.J. Brabec, G. Zerza, G. Cerullo et al., Chem. Phys. Lett. 340, 232–236 (2001)CrossRefGoogle Scholar
  48. 48.
    D. Ompong, J. Singh, Chem. Phys. Chem. 16, 1281–1285 (2015)CrossRefGoogle Scholar
  49. 49.
    D.F. Kronholm, J.C. Hummelen, Organic Photovoltaics. (Wiley, Germany, 2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Engineering and ITCharles Darwin UniversityDarwinAustralia

Personalised recommendations