High performance of covalently grafted poly(o-methoxyaniline) nanocomposite in the presence of amine-functionalized graphene oxide sheets (POMA/f-GO) for supercapacitor applications

  • Abdolkhaled Mohammadi
  • Seyed Jamaleddin PeighambardoustEmail author
  • Ali Akbar Entezami
  • Naser Arsalani


In this study, we have synthesized covalently-grafted poly(o-methoxyaniline) nanocomposites in the presence of amine-functionalization of graphene oxide sheets (POMA/f-GO) via an in situ oxidative polymerization poly(o-methoxyaniline) initiated by those amino groups on graphene. Field emission scanning electron microscopy, Fourier transfer infrared spectroscopy, and X-ray diffraction analyses were conducted to characterize the POMA/f-GO film. The electrochemical performance of the nanocomposite was evaluated by cyclic voltammetry and galvanostatic charge–discharge. The POMA/f-GO nanocomposite showed the highest electrochemical capacitance with a value of 422 F g−1 at 0.5 A g−1 current density and good cycle stability with 4.8% loss of capacitance over 1000 cycles. In comparison with polyaniline/f-GO and poly(o-chloroaniline)/f-GO, the POMA/f-GO nanocomposite demonstrated good cyclic stability. The synthesized nanocomposites showed a unique hierarchical morphology of the POMA array like nanostructures grown on the f-GO sheets, which increased the accessible surface area for the redox reaction and allowed faster ion diffusion for excellent electrochemical performance. This research highlights the importance of introducing amino functional groups of graphene oxide and substitution of aniline which improve the electrochemical properties to achieve highly stable cycling and high capacitance values.


Graphene Oxide Specific Capacitance Field Emission Scanning Electron Microscopy Image Galvanostatic Charge Oxygen Functional Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for the financial support of “Iran Nanotechnology Initiative Council”.


  1. 1.
    R.E. Smalley, MRS Bull. 30(06), 412–417 (2005)CrossRefGoogle Scholar
  2. 2.
    K. Wang, H. Wu, Y. Meng, Z. Wei, Small 10(1), 14–31 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev. 43(10), 3303–3323 (2014)CrossRefGoogle Scholar
  4. 4.
    D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, ACS Appl. Mater. Interfaces 6(1), 200–209 (2014)CrossRefGoogle Scholar
  5. 5.
    V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, Prog. Mater. Sci. 56(8), 1178–1271 (2011)CrossRefGoogle Scholar
  6. 6.
    K.R. Reddy, B.C. Sin, K.S. Ryu, J.-C. Kim, H. Chung, Y. Lee, Synth. Met. 159(7–8), 595–603 (2009)CrossRefGoogle Scholar
  7. 7.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39(1), 228–240 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J. Liu, Nano Lett. 12(8), 4206–4211 (2012)CrossRefGoogle Scholar
  9. 9.
    L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, J. Lin, ACS Nano 6(7), 5941–5951 (2012)CrossRefGoogle Scholar
  10. 10.
    K.R. Reddy, K.-P. Lee, Y. Lee, A.I. Gopalan, Mater. Lett. 62(12–13), 1815–1818 (2008)CrossRefGoogle Scholar
  11. 11.
    K. R. Reddy, K.-P. Lee, A. I. Gopalan and A. M. Showkat, Polym. Adv. Technol. 18(1), 38–43 (2007)CrossRefGoogle Scholar
  12. 12.
    Z. Bai, Q. Zhang, J. Lv, S. Chao, L. Yang, J. Qiao, Electrochim. Acta 177, 107–112 (2015)CrossRefGoogle Scholar
  13. 13.
    Y.-P. Zhang, S.-H. Lee, K.R. Reddy, A.I. Gopalan, K.-P. Lee, J. Appl. Polym. Sci. 104(4), 2743–2750 (2007)CrossRefGoogle Scholar
  14. 14.
    K.R. Reddy, W. Park, B.C. Sin, J. Noh, Y. Lee, J. Colloid Interface Sci. 335(1), 34–39 (2009)CrossRefGoogle Scholar
  15. 15.
    K.R. Reddy, B.C. Sin, K.S. Ryu, J. Noh, Y. Lee, Synth. Met. 159(19–20), 1934–1939 (2009)CrossRefGoogle Scholar
  16. 16.
    K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1–16 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Hassan, K.R. Reddy, E. Haque, S.N. Faisal, S. Ghasemi, A.I. Minett, V.G. Gomes, Compos. Sci. Technol. 98, 1–8 (2014)CrossRefGoogle Scholar
  18. 18.
    K.R. Reddy, K.-P. Lee, A.I. Gopalan, J. Nanosci. Nanotechnol. 7(9), 3117–3125 (2007)CrossRefGoogle Scholar
  19. 19.
    K.R. Reddy, K.-P. Lee, A.I. Gopalan, H.-D. Kang, React. Funct. Polym. 67(10), 943–954 (2007)CrossRefGoogle Scholar
  20. 20.
    P.A. Basnayaka, M.K. Ram, L. Stefanakos, A. Kumar, Mater. Chem. Phys. 141(1), 263–271 (2013)CrossRefGoogle Scholar
  21. 21.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4(8), 4806–4814 (2010)CrossRefGoogle Scholar
  22. 22.
    Z.-F. Li, H. Zhang, Q. Liu, Y. Liu, L. Stanciu, J. Xie, Carbon 71(0), 257–267 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, ACS Nano 4(9), 5019–5026 (2010)CrossRefGoogle Scholar
  24. 24.
    M. Kumar, K. Singh, S.K. Dhawan, K. Tharanikkarasu, J.S. Chung, B.-S. Kong, E.J. Kim, S.H. Hur, Chem. Eng. J. 231, 397–405 (2013)CrossRefGoogle Scholar
  25. 25.
    P. Yu, Y. Li, X. Zhao, L. Wu, Q. Zhang, Langmuir 30(18), 5306–5313 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Zhong, Y. Song, Y. Li, C. Ma, X. Zhai, J. Shi, Q. Guo, L. Liu, J. Power Sources 217, 6–12 (2012)CrossRefGoogle Scholar
  27. 27.
    M. O. Ansari and F. Mohammad, Sens. Actuators B Chem. 157(1), 122–129 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Kim, C. Lee, J. Jang, Adv. Funct. Mater. 24(17), 2489–2499 (2014)CrossRefGoogle Scholar
  29. 29.
    G.-L. Chen, S.-M. Shau, T.-Y. Juang, R.-H. Lee, C.-P. Chen, S.-Y. Suen, R.-J. Jeng, Langmuir 27(23), 14563–14569 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Lai, L. Chen, D. Zhan, L. Sun, J. Liu, S.H. Lim, C.K. Poh, Z. Shen, J. Lin, Carbon 49(10), 3250–3257 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Liu, Y. Ma, S. Guang, H. Xu, X. Su, J. Mater. Chem. A 2(3), 813–823 (2014)CrossRefGoogle Scholar
  32. 32.
    N. Lingappan, D.H. Kim, K.T. Lim, Mol. Cryst. Liq. Cryst. 580(1), 69–75 (2013)CrossRefGoogle Scholar
  33. 33.
    L. Wang, Y. Ye, X. Lu, Z. Wen, Z. Li, H. Hou and Y. Song, Sci. Rep. 3, 1–9 (2013)Google Scholar
  34. 34.
    L. Wang, Y. Ye, X. Lu, Z. Wen, Z. Li, H. Hou and Y. Song, Sci. Rep. 3, 3568 (2013).Google Scholar
  35. 35.
    Z.-F. Li, H. Zhang, Q. Liu, Y. Liu, L. Stanciu, J. Xie, Carbon 71, 257–267 (2014)CrossRefGoogle Scholar
  36. 36.
    X. Liu, P. Shang, Y. Zhang, X. Wang, Z. Fan, B. Wang, Y. Zheng, J. Mater. Chem. A 2(37), 15273–15278 (2014)CrossRefGoogle Scholar
  37. 37.
    Y. Liu, Y. Ma, S. Guang, F. Ke, H. Xu, Carbon 83, 79–89 (2015)CrossRefGoogle Scholar
  38. 38.
    W. Wu, Y. Li, G. Zhao, L. Yang, D. Pan, J. Mater. Chem. A 2(42), 18058–18069 (2014)CrossRefGoogle Scholar
  39. 39.
    P. Xu, X. Han, B. Zhang, N.H. Mack, S.-H. Jeon, H.-L. Wang, Polymer 50(12), 2624–2629 (2009)CrossRefGoogle Scholar
  40. 40.
    D. Profeti, P. Olivi, Electrochim. Acta 49(27), 4979–4985 (2004)CrossRefGoogle Scholar
  41. 41.
    W. Fan, C. Zhang, W.W. Tjiu, K.P. Pramoda, C. He, T. Liu, ACS Appl. Mater. Interfaces 5(8), 3382–3391 (2013)CrossRefGoogle Scholar
  42. 42.
    H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, ACS Appl. Mater. Interfaces 2(3), 821–828 (2010)CrossRefGoogle Scholar
  43. 43.
    J. Li, H. Xie, Y. Li, J. Liu, Z. Li, J. Power Sources 196(24), 10775–10781 (2011)CrossRefGoogle Scholar
  44. 44.
    Q. Wang, J. Yan, Z. Fan, T. Wei, M. Zhang, X. Jing, J. Power Sources 247, 197–203 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, Nano Lett. 13(1), 72–78 (2013)CrossRefGoogle Scholar
  46. 46.
    Y. Yoon, K. Lee, C. Baik, H. Yoo, M. Min, Y. Park, S.M. Lee, H. Lee, Adv. Mater. 25(32), 4437–4444 (2013)CrossRefGoogle Scholar
  47. 47.
    F. Beck, Electroanalysis 7(3), 298–298 (1995)CrossRefGoogle Scholar
  48. 48.
    X. Lang, A. Hirata, T. Fujita, M. Chen, Nat. Nanotechnol. 6(4), 232–236 (2011)CrossRefGoogle Scholar
  49. 49.
    T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, K.S. Suh, ACS Nano 5(1), 436–442 (2011)CrossRefGoogle Scholar
  50. 50.
    Y.G. Wang, H.Q. Li, Y.Y. Xia, Adv. Mater. 18(19), 2619–2623 (2006)CrossRefGoogle Scholar
  51. 51.
    H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6(1), 41–53 (2013)CrossRefGoogle Scholar
  52. 52.
    H. Zhou, Y. Sun, G. Li, S. Chen, Y. Lu, Polymer 55(17), 4459–4467 (2014)CrossRefGoogle Scholar
  53. 53.
    P. Xiong, H. Huang, X. Wang, J. Power Sources 245, 937–946 (2014)CrossRefGoogle Scholar
  54. 54.
    Y. Li, Y. Fang, H. Liu, X. Wu, Y. Lu, Nanoscale 4(9), 2867–2869 (2012)CrossRefGoogle Scholar
  55. 55.
    J. Yan, L. Yang, M. Cui, X. Wang, K.J. Chee, V.C. Nguyen, V. Kumar, A. Sumboja, M. Wang and P.S. Lee, Adv. Energy Mater. 4(18) (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Abdolkhaled Mohammadi
    • 1
  • Seyed Jamaleddin Peighambardoust
    • 1
    Email author
  • Ali Akbar Entezami
    • 2
  • Naser Arsalani
    • 3
  1. 1.Faculty of Chemical and Petroleum EngineeringUniversity of TabrizTabrizIran
  2. 2.Polymer Synthesis Laboratory, Department of Organic and Biochemistry, Faculty of ChemistryUniversity of TabrizTabrizIran
  3. 3.Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations