The synthesize of CuWO4 nano particles by a new morphological control method, characterization of its photocatalytic activity

  • Farhad AhmadiEmail author
  • Mehdi Rahimi-NasrabadiEmail author
  • Mohammad Eghbali-Arani


In various branch of health sciences the nanoparticles are widely used for removing of bacteria, pollutes and etc. However, remove of chemical pollutes like azo dyes, pesticides, cyanide, colors, bacteria, parasites, antibiotics drugs and etc under photocatalytic conditions are still interest. In this work, we synthesized a nonparticle of copper tungstate (CuWO4) via a co-precipitation method. We also investigated the effect of amino acids such as cysteine, glycine, and valine on morphology and particle size of nanoparticles. The structure and morphology of nano particles were characterized by XRD, SEM, VSM, EDS and DRS spectroscopy methods. The methyl orange (MO) degradation model was used for assessment of photocatalytic properties of as-prepared nanoparticles under UV irradiation. The results have been shown that the CuWO4 nanoparticles can be decomposed about 81% of MO after 80 min UV irradiation.


Methyl Orange Energy Dispersive Spectrometry Vibrate Sample Magnetometer Tungsten Oxide Methyl Orange Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Hosseinzadeh, S. Abassi, F. Ahmadi, Anal. Lett. 40, 2693 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Rahimi-Nasrabadi, F. Ahmadi, S. M. Pourmortazavi, M.R. Ganjali, K. Alizadeh, J. Mol. Liq. 144, 97 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Rahimi-Nasrabadi, M.R. Ganjali, M.B. Gholivand, F. Ahmadi, P. Norouzi, M. Salavati-Niasari, J. Mol. Struct. 885, 76 (2008)CrossRefGoogle Scholar
  4. 4.
    L. Chen, J. He, Y. Liu, P. Chen, C.-T. Au, S.-F. Yin, Chin. J. Catal. 37, 780 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Yu, W. Zhou, J.C. Yu, H. Liu, L. Wei, Chin. J. Catal. 35, 1609 (2014)CrossRefGoogle Scholar
  6. 6.
    R.K. Nath, M.F.M. Zain, M. Jamil, Renew. Sustain. Energy Rev. 62, 1184 (2016)CrossRefGoogle Scholar
  7. 7.
    N. Shaham-Waldmann, Y. Paz, Mater. Sci. Semicond. Proc. 42, 72 (2016)CrossRefGoogle Scholar
  8. 8.
    F. Ahmadi, L. Zarrin, S. Sharifnia, S. N. Hosseini, J. Liquid Chromatogr. Relat. Technol. 37, 1750 (2014).CrossRefGoogle Scholar
  9. 9.
    F. Ahmadi, M. Rajabi, F. Faizi, M. Rahimi-Nasrabadi, B. Maddah, Int. J. Environ. Anal. Chem. 94, 1123 (2014)CrossRefGoogle Scholar
  10. 10.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  11. 11.
    A. Akhundi, A. Habibi-Yangjeh, Appl. Surf. Sci. 358, 261 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, J. Colloid Interface Sci. 480, 218 (2016)CrossRefGoogle Scholar
  13. 13.
    C.C. Chen, W.H. Ma, J.C. Zhao, Chem. Soc. Rev. 39, 4206 (2010)CrossRefGoogle Scholar
  14. 14.
    U.M. García-Pérez, A. Martínez-de la Cruz, J. Peral, Electrochim. Acta 81, 227 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Ungelenk, M. Speldrich, R. Dronskowski, C. Feldmann, Solid State Sci. 31, 62 (2014)CrossRefGoogle Scholar
  16. 16.
    K.V. Dabre, S.J. Dhoble, J. Lochab J. Lumin. 149, 348 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, A.R. Banan, F. Ahmadi, J. Mol. Struct. 1074, 85 (2014)CrossRefGoogle Scholar
  18. 18.
    K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S.M. Pourmortazavi, F. Ahmadi, H.R. Naderi, M.R. Ganjali, J. Mater. Sci. Mater. Electron. 27, 4541 (2016).CrossRefGoogle Scholar
  19. 19.
    Y.-X. Zhou, H.-B. Yao, Q. Zhang, J.-Y. Gong, S.-J. Liu, S.-H. Yu, Inorg. Chem. 48, 1082 (2009)CrossRefGoogle Scholar
  20. 20.
    J.M. Quintana-Melgoza, A. Gómez-Cortés, M. Avalos-Borja, React. Kinet. Catal. 76, 131 (2002).CrossRefGoogle Scholar
  21. 21.
    M. Bonanni, L. Spanhel, M. Lerch, E. Fuglein, G. Muller, F. Jermann, Chem. Mater. 10, 304 (1998)CrossRefGoogle Scholar
  22. 22.
    A.R. Phani, M. Passacantando, L. Lozzi, S. Santucci. J. Mater. Sci. 35, 4879 (2000)CrossRefGoogle Scholar
  23. 23.
    F.S. Wen, X. Zhao, H. Huo, J.S. Chen, E. Shu-Lin, J.H. Zhang, Mater. Lett. 55, 152 (2002)CrossRefGoogle Scholar
  24. 24.
    S.M. Pourmortazavi, M. Rahimi-Nasrabadi, Y. Fazli, M. Mohammad-Zadeh, Appl. Phys. A. 119, 929 (2015)CrossRefGoogle Scholar
  25. 25.
    N.V. Pillai, V.P.M. Pillai, R. Vinodkumar, I. Navas, V. Ganesan, P. Koshy, J. Alloy. Compd. 509, 2745 (2011)CrossRefGoogle Scholar
  26. 26.
    A. Durairajan, D. Balaji, K. KaviRasu, S. Moorthy Babu, M.A. Valente, D. Thangaraju, Y. Hayakawa, J. Luminesc. 70, 743 (2016).CrossRefGoogle Scholar
  27. 27.
    M. Riazian, J. Nanostruct. 4, 433 (2014)Google Scholar
  28. 28.
    S. M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 474 (2016).CrossRefGoogle Scholar
  29. 29.
    J. Safaei-Ghomi, S. Zahedi, M. Javid, M.A. Ghasemzadeh, J. Nanostruct. 5, 153 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, J. Mater. Sci. Mater. Electron. 27, 11873 (2016).CrossRefGoogle Scholar
  31. 31.
    M. Rahimi-Nasrabadi, M. Rostami, F. Ahmadi, A. Fallah Shojaie, M. Delavar Rafiee, J. Mater. Sci. Mater. Electron. 27, 11940 (2016).CrossRefGoogle Scholar
  32. 32.
    A. Sobhani-Nasab, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Liq. 216, 1 (2016).CrossRefGoogle Scholar
  33. 33.
    J. Tauc, Mater. Res. Bull. 3, 37 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Medicinal Chemistry, School of Pharmacy-International CampusUniversity of Medical SciencesTehranIran
  2. 2.Faculty of PharmacyBaqiyatallah University of Medical SciencesTehranIran
  3. 3.Department of ChemistryImam Hossein UniversityTehranIran
  4. 4.Department of PhysicsUniversity of KashanKashanIran

Personalised recommendations