Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures

  • M. V. NikolicEmail author
  • D. L. Sekulic
  • Z. Z. Vasiljevic
  • M. D. Lukovic
  • V. B. Pavlovic
  • O. S. Aleksic


In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe2TiO5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starting molar ratio of Fe2O3 and TiO2 1:1—PSB11 and 1:1.5—PSB115). XRD, SEM and TEM analysis of PSB11 and PSB115 powders obtained by a simple solid state process from starting hematite and anatase nanopowders confirmed the formation of nanostructured orthorhombic pseudobrookite with small amounts of excess hematite and rutile. The dielectric constant decreased with frequency and temperature for both compacts and bulk samples. Higher values were determined for bulk samples also reflecting the influence of sample composition. Change in the dielectric loss also reflected the influence of sample composition showing one maximum at high frequencies for compacts, and two maxima at room temperature for bulk samples. Complex impedance was analyzed using equivalent circuits and showed in the case of compacts the influence of both grain and grain boundary components, while in the case of bulk samples the dominant influence of grain boundaries. The temperature dependence of the determined grain and grain boundary resistance for compacts and grain boundary resistance for bulk samples was analyzed using the adiabatic small polaron hopping model enabling determination of activation energies for conduction, while the temperature dependence of relaxation times enabled determination of activation energies for relaxation. Changes in electrical conductivity for compacts and bulk samples followed Jonscher’s power law. The change of the determined frequency constant with temperature showed that at elevated temperatures the quantum mechanical-tunneling model for the case of small polaron hopping explains the conduction mechanism occurring in both compacts and bulk samples.


Bulk Sample Sample Temperature Boundary Component Complex Impedance Dielectric Loss Tangent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to express their gratitude to Dr. M. Mitric for XRD measurements and Dr. N. Labus for help with TEM sample preparation. This work was performed as part of projects III45007 and III45014 financed by the Ministry for Education, Science and Technological Development of the Republic of Serbia.


  1. 1.
    Q. Liu, J. He, T. Yao, Z. Sun, W. Cheng, S. He, Y. Xie, Y. Peng, H. Cheng, Y. Sun, Y. Jiang, F. Hu, Z. Xie, W. Yan, Z. Pan, Z. Wu, S. Wei, Nat. Commun. 5, 5122 (2014)CrossRefGoogle Scholar
  2. 2.
    Z. Lou, Y. Li, H. Song, Z. Ye, L. Zhu, RSC Adv. 6, 45343 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Ramezani, A. Davoodi, A. Malekizad, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron 26, 3597–3962 (2015)Google Scholar
  4. 4.
    P.S. Bassi, S.Y. Chiam, G.J. Barber, L.H. Wong, ACS Appl. Mater. Interfaces 6, 22490 (2014)CrossRefGoogle Scholar
  5. 5.
    P.S. Bassi, R.P. Antony, P.P. Boix, Y. Fang, J. Barber, L.H. Wong, Nano Energy 22, 310 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Dondi, F. Matteucci, G. Cruciani, G. Gasparotto, D.M. Tobaldi, Solid State Sci. 9, 362 (2007)CrossRefGoogle Scholar
  7. 7.
    Y. Ku, Y.-C. Liu, P.-C. Chiu, Y.-L. Kuo, Y.-H. Tseng, Ceram. Int. 40, 4599 (2014)CrossRefGoogle Scholar
  8. 8.
    K.-M. Min, K.-S. Park, A.-H. Lim, J.-C. Kim, D.-W. Kim, Ceram. Int. 38, 6009 (2012)CrossRefGoogle Scholar
  9. 9.
    R. Yu, Z. Li, D. Wang, X. Lai, C. Xing, M. Yang, X. Xing, Scripta Mater. 63, 155 (2010)CrossRefGoogle Scholar
  10. 10.
    Z.Z. Vasiljevic, M.D. Lukovic, M.V. Nikolic, N.B. Tasic, M. Mitric, O.S. Aleksic, Ceram. Int. 41, 6889 (2015)CrossRefGoogle Scholar
  11. 11.
    U. Atzimony, E. Gurewitz, M. Melamud, H. Pinto, H. Shaked, G. Gorodetsky, E. Hermon, R.M. Hornreich, S. Shtrikman, B. Wanklyn, Phys. Rev. Lett. 43, 782 (1979)CrossRefGoogle Scholar
  12. 12.
    J.L. Tholence, Y. Yashurin, J.K. Kjems, B. Wanklyn, J. Magn. Magn. Mater. 54–57, 203 (1986)CrossRefGoogle Scholar
  13. 13.
    S. Sharma, T. Basu, A. Shahee, K. Singh, N.P. Lalla, E.V. Sampathkumaran, Phys. Rev. B 90, 144426 (1986)CrossRefGoogle Scholar
  14. 14.
    N.J. Tharayil, R. Raveendran, A.V. Vaidyan, P.G. Chithra, Indian J. Eng. Mater. Sci. 15, 489 (2008)Google Scholar
  15. 15.
    S. Sharma, T. Basu, A. Shahee, K. Singh, N.P. Lalla, J. Alloy. Compd. 663, 289 (2016)CrossRefGoogle Scholar
  16. 16.
    A. C. Larson, R. B. Von Dreele, General Structure Analysis System (GSAS) Los Alamos National Laboratory Report LAUR, 86–748, 2004Google Scholar
  17. 17.
    B.H. Toby, EXPGUI. J. Appl. Crystallogr. 34, 210 (2001)CrossRefGoogle Scholar
  18. 18.
    P. Tiedemann, H. Mueller-Buschbaum, Z. Anorg. Allg. Chem. 494, 98 (1982)CrossRefGoogle Scholar
  19. 19.
    M. Drofenik, L. Golic, D. Hanzel, V. Krasevac, A. Prodan, M. Bakker, D. Kolar, J. Solid State Chem. 40, 35 (1981)CrossRefGoogle Scholar
  20. 20.
    Z.Z. Djuric, O.S. Aleksic, M.V. Nikolic, N. Labus, M. Radovanovic, M.D. Lukovic, Ceram. Int. 40, 15131 (2014)CrossRefGoogle Scholar
  21. 21.
    S.F. Mansour, M.A. Elkestawy, Ceram. Int. 37, 1175 (2011)CrossRefGoogle Scholar
  22. 22.
    C.G. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  23. 23.
    P. Kour, P. Kumar, S.K. Sinha, M. Kar, J. Mater. Sci.: Mater. Electron 26, 1304 (2015)Google Scholar
  24. 24.
    S. Hcini, E. Oumezzine, M. Baazaoui, H. Rahmouni, Appl. Phys. A 120, 1453 (2015)CrossRefGoogle Scholar
  25. 25.
    W. Chen, W. Zhu, O.K. Tan, X.F. Chen, J. Appl. Phys. 108, 034101 (2010)CrossRefGoogle Scholar
  26. 26.
    R. Martínez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, J. Phys. D Appl. Phys. 44, 105302 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Dutta, R.N.P. Choudhary, P.K. Sinha, A.K. Thakur, J. Appl. Phys. 96, 1607 (2004)CrossRefGoogle Scholar
  28. 28.
    K.M. Batoo, M.-S. Abd, El-sadek. J. Alloy. Compd. 566, 112 (2013)CrossRefGoogle Scholar
  29. 29.
    D.L. Sekulic, Z.Z. Lazarevic, C.D. Jovalekic, A.N. Milutinovic, N.Z. Romcevic, Sci. Sinter. 48, 17 (2016)CrossRefGoogle Scholar
  30. 30.
    M.V. Nikolic, D.L. Sekulic, N. Nikolic, M.P. Slankamenac, O.S. Aleksic, H. Danninger, E. Halwax, V.B. Pavlovic, P.M. Nikolic, Sci. Sinter. 45, 281 (2013)CrossRefGoogle Scholar
  31. 31.
    A. S. Bondarenko, G. Ragoisha, EIS Spectrum Analyzer,
  32. 32.
    M. Idrees, M. Nadeem, M.M. Hassan, J. Phys. D Appl. Phys. 43, 155401 (2010)CrossRefGoogle Scholar
  33. 33.
    M.M. El-Nahass, A.A. Attia, G.F. Salem, H.A.M. Ali, M.I. Ismail, Phys. B 434, 89 (2014)CrossRefGoogle Scholar
  34. 34.
    A.K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
  35. 35.
    A. Ghosh, Phys. Rev. B 41, 1479 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. V. Nikolic
    • 1
    Email author
  • D. L. Sekulic
    • 2
  • Z. Z. Vasiljevic
    • 3
  • M. D. Lukovic
    • 1
  • V. B. Pavlovic
    • 3
  • O. S. Aleksic
    • 1
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.University of Novi Sad, Faculty of Technical SciencesNovi SadSerbia
  3. 3.Institute of Technical Sciences of SASABelgradeSerbia

Personalised recommendations