Controlling recombination kinetics of hybrid poly-3-hexylthiophene (P3HT)/titanium dioxide solar cells by self-assembled monolayers

  • S. Loheeswaran
  • M. Thanihaichelvan
  • P. Ravirajan
  • J. Nelson
Article

Abstract

Self-assembled monolayers (SAMs) of benzoic acid based molecules are used to modify the metal oxide–polymer interface in a hybrid poly-3-hexylthiophene (P3HT)/TiO2 photovoltaic device structure. The effect of SAMs on current density is in accordance with expectation from the driving force for charge separation of metal oxide–polymer interface in a hybrid poly-3-hexylthiophene (P3HT)/TiO2 photovoltaic device. However, the effect of monolayers on open circuit voltage is quite unexpected from the interfacial energetics as all the monolayers improve the open circuit voltage in spite of different sign of the interfacial dipole for different SAMs. This suggests that the monolayers have additional functions. Overall device performance is enhanced by more than a factor of two using a SAM with permanent dipole pointing towards the TiO2 surface or pointing towards polymer when compared to a control device with no interface modifiers. This study concludes that the SAM layer has two functions that are to shift the position of the conduction band of the porous TiO2 relative to the polymer HOMO level so as to influence interfacial charge separation and to act as a barrier layer, insulating back electron transfer from the TiO2 to the polymer. Both effects can benefit the performance of hybrid polymer metal oxide solar cells.

Keywords

TiO2 High Occupied Molecular Orbital TiO2 Surface TiO2 Electrode Porous TiO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.H. Liao, H.J. Jhuo, P.N. Yeh, Y.S. Cheng, Y.L. Li, Y.H. Lee, S. Sharma, S.A. Chen, Sci. Rep. 4(6813), 1–7 (2014)Google Scholar
  2. 2.
    T. Xu, Q. Qiao, Energy Environ. Sci. 4(8), 2700–2720 (2011)CrossRefGoogle Scholar
  3. 3.
    C.C. Chueh, C.Z. Li, A.K.Y. Jen, Energy Environ. Sci. 8(4), 1160–1189 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Chen, J.R. Manders, S.W. Tsang, F. So, J. Mater. Chem. 22(46), 24202–24212 (2012)CrossRefGoogle Scholar
  5. 5.
    P. Ravirajan, A.M. Peiró, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, J. Phys. Chem. B 110(15), 7635–7639 (2006)CrossRefGoogle Scholar
  6. 6.
    J. Krüger, U. Bach, M. Grätzel, Adv. Mater. 12(6), 447–451 (2000)CrossRefGoogle Scholar
  7. 7.
    C. Goh, S.R. Scully, M.D. McGehee, J. Appl. Phys. 101(11), 114503 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Loheeswaran, K. Balashangar, J. Jevirshan, P. Ravirajan, J. Nanoelectron. Optoelectron. 8(6), 484–488 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Thanihaichelvan, K. Sockiah, K. Balashangar, P. Ravirajan, J. Mater. Sci.: Mater. Electron. 26(6), 3558–3563 (2015)Google Scholar
  10. 10.
    S. Khodabakhsh, B. Sanderson, J. Nelson, T.S. Jones, Adv. Funct. Mater. 16(1), 95–100 (2006)CrossRefGoogle Scholar
  11. 11.
    J.S. Kim, J.H. Park, J.H. Lee, J. Jo, D.Y. Kim, K. Cho, Appl. Phys. Lett. 91, 112111 (2007)CrossRefGoogle Scholar
  12. 12.
    B. Delgertsetseg, N. Javkhlantugs, E. Enkhtur, Y. Yokokura, T. Ooba, K. Ueda, C. Ganzorig, M. Sakomura, Org. Electron. 23, 164–170 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Khassanov, H.G. Steinrück, T. Schmaltz, A. Magerl, M. Halik, Acc. Chem. Res. 48(7), 1901–1908 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D.D.C. Bradley, H. Murata, Adv. Funct. Mater. 14(12), 1205–1210 (2004)CrossRefGoogle Scholar
  15. 15.
    D. Cahen, A. Kahn, Adv. Mater. 15(4), 271–277 (2003)CrossRefGoogle Scholar
  16. 16.
    A. Abrusci, S.D. Stranks, P. Docampo, H.L. Yip, A.K.Y. Jen, H.J. Snaith, Nano Lett. 13(7), 3124–3128 (2013)CrossRefGoogle Scholar
  17. 17.
    S.K. Hau, Y.J. Cheng, H.L. Yip, Y. Zhang, H. Ma, A.K.Y. Jen, ACS Appl. Mater. Interfaces 2(7), 1892–1902 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Carrara, F. Nüesch, L. Zuppiroli, Synth. Met. 121(1–3), 1633–1634 (2001)CrossRefGoogle Scholar
  19. 19.
    G.R.R.A. Kumara, K. Tennakone, V.P.S. Perera, A. Konno, S. Kaneko, M. Okuya, J. Phys. D Appl. Phys. 34(6), 868–873 (2001)CrossRefGoogle Scholar
  20. 20.
    J.N. Clifford, E. Palomares, M.K. Nazeeruddin, M. Gratzel, J. Nelson, X. Li, N.J. Long, J.R. Durrant, J. Am. Chem. Soc. 126(16), 5225–5233 (2004)CrossRefGoogle Scholar
  21. 21.
    E. Palomares, C.N. Clifford, A. Haque, T. Lutz, J.R. Durrant, Chem. Commun. 14, 1464–1465 (2002)CrossRefGoogle Scholar
  22. 22.
    C. Goh, S.R. Scully, M.D. McGehee, J. Appl. Phys. Lett. 101, 114503–114515 (2007)Google Scholar
  23. 23.
    T. Ishwara, D.D.C. Bradley, J. Nelson, P. Ravirajan, I. Vanseveren, T. Cleij, D. Vanderzande, L. Lutsen, S. Tierney, M. Heeney, I. McCulloch, Appl. Phys. Lett. 92(5), 053308 (2008)CrossRefGoogle Scholar
  24. 24.
    M.D. McGehee, MRS Bull. 34(2), 95–100 (2009)CrossRefGoogle Scholar
  25. 25.
    Y. Kim, A.M. Ballantyne, J. Nelson, D.D.C. Bradley, Org. Electron. 10(1), 205–209 (2009)CrossRefGoogle Scholar
  26. 26.
    M. Shalom, S. Rühle, I. Hod, S. Yahav, A. Zaban, J. Am. Chem. Soc. 131(29), 9876–9877 (2009)CrossRefGoogle Scholar
  27. 27.
    P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Gratzel, Nat. Mater. 2, 402–407 (2003)CrossRefGoogle Scholar
  28. 28.
    A.M. Peiro, P. Ravirajan, K. Govender, D.S. Boyle, P. O’Brien, D.D.C. Bradley, J. Nelson, J.R. Durrant, J. Mater. Chem. 16(21), 2088–2096 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. Loheeswaran
    • 1
    • 2
  • M. Thanihaichelvan
    • 1
  • P. Ravirajan
    • 1
  • J. Nelson
    • 3
  1. 1.Department of Physics, Faculty of ScienceUniversity of JaffnaJaffnaSri Lanka
  2. 2.Department of Physical Science, Trincomalee CampusEastern UniversityTrincomaleeSri Lanka
  3. 3.Department of PhysicsImperial College LondonLondonUK

Personalised recommendations