Advertisement

Engineered WO3 nanorods for conformal growth of WO3/BiVO4 core–shell heterojunction towards efficient photoelectrochemical water oxidation

  • Jinzhan Su
  • Tao Zhang
  • Lu Wang
Article

Abstract

High aspect ratio WO3 nanorods were obtained by post growth transformation of ammonium tungsten bronze ((NH4)0.33·WO3) nanorods which are grown via a facile solvothermal method. Influence of capping agents, reaction temperature and annealing temperature on the morphologies and performances of (NH4)0.33·WO3 films have been investigated and the growth mechanism of (NH4)0.33·WO3 nanorods was also explored. The results show that NH4 + plays a key role for formation of rod-like morphology at appropriate reaction temperature. Monoclinic WO3 nanorods were obtained via removal of ammonium by annealing the synthesized (NH4)0.33·WO3 at 500 °C in air. Conformal WO3/BiVO4 heterojunction was also synthesized using PLD to extend its light harvest range as well as enhance the charge separation. The heterojunction was characterized to demonstrate efficient photocatalytic water splitting by core–shell arrays constructed based on high aspect ratio nanowires.

Keywords

BiVO4 Tungsten Bronze Pulse Laser Deposition Method Photoelectrochemical Performance Monoclinic BiVO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51236007, 51202186).

Supplementary material

10854_2016_6082_MOESM1_ESM.docx (269 kb)
Supplementary material 1 (DOCX 269 kb)

References

  1. 1.
    A. Fujishima, K. Honda, Nature 238(5385), 37–38 (1972)CrossRefGoogle Scholar
  2. 2.
    T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43(22), 7520–7535 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Park, K.J. McDonald, K.-S. Choi, Chem. Soc. Rev. 42(6), 2321–2337 (2013)CrossRefGoogle Scholar
  4. 4.
    P. Chatchai, Y. Murakami, S.-Y. Kishioka, A.Y. Nosaka, Y. Nosaka, Electrochim. Acta 54(3), 1147–1152 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Su, L. Guo, N. Bao, C.A. Grimes, Nano Lett. 11(5), 1928–1933 (2011)CrossRefGoogle Scholar
  6. 6.
    J. Su, L. Vayssieres, ACS Energy Lett. 1(1), 121–135 (2016)CrossRefGoogle Scholar
  7. 7.
    G. Ai, H. Li, S. Liu, R. Mo, J. Zhong, Adv. Funct. Mater. 25(35), 5706–5713 (2015)CrossRefGoogle Scholar
  8. 8.
    K. Guo, Z. Liu, J. Han, Z. Liu, Y. Li, B. Wang, T. Cui, C. Zhou, Phys. Chem. Chem. Phys. 16(30), 16204–16213 (2014)CrossRefGoogle Scholar
  9. 9.
    K.V. Khot, S.S. Mali, R.M. Mane, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci.: Mater. Electron. 26(9), 6897–6906 (2015)Google Scholar
  10. 10.
    J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A.L. Briseno, P. Yang, ACS Central Sci. 2(2), 80–88 (2016)CrossRefGoogle Scholar
  11. 11.
    X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, J. Am. Chem. Soc. 137(26), 8356–8359 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Da Silva, L. Scalvi, V.S.L. Neto, L. Dall’Antonia, J. Mater. Sci.: Mater. Electron. 26(10), 7705–7714 (2015)Google Scholar
  13. 13.
    P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, X. Zheng, Nano Lett. 14(2), 1099–1105 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, Small 10(18), 3692–3699 (2014)CrossRefGoogle Scholar
  15. 15.
    X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee, S.H. Oh, J.K. Kim, J.H. Park, Nature Communications 5, 4775 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, Sci. Rep. 5, 11141 (2015)CrossRefGoogle Scholar
  17. 17.
    I. Grigioni, K.G. Stamplecoskie, E. Selli, P.V. Kamat, J. Phys. Chem. C 119(36), 20792–20800 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Nishanthi, E. Subramanian, B. Sundarakannan, D.P. Padiyan, Sol. Energy Mater. Sol. Cells 132, 204–209 (2015)CrossRefGoogle Scholar
  19. 19.
    C. Wang, L. Wu, H. Wang, W. Zuo, Y. Li, J. Liu, Adv. Funct. Mater. 25(23), 3524–3533 (2015)CrossRefGoogle Scholar
  20. 20.
    M.G. Mali, H. Yoon, M.-W. Kim, M.T. Swihart, S.S. Al-Deyab, S.S. Yoon, Appl. Phys. Lett. 106(15), 151603 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Sui, C. Han, Y. Wang, J. Li, X. Gu, J. Mater. Sci.: Mater. Electron. 27(5), 4290–4296 (2016)Google Scholar
  22. 22.
    C. Ng, Y.H. Ng, A. Iwase, R. Amal, ACS Appl. Mater. Interfaces 5(11), 5269–5275 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi (b) 15(2), 627–637 (1966)CrossRefGoogle Scholar
  24. 24.
    R. Bhattacharya, J. Electrochem. Soc. 130(10), 2040–2042 (1983)CrossRefGoogle Scholar
  25. 25.
    J. Su, X. Feng, J.D. Sloppy, L. Guo, C.A. Grimes, Nano Lett. 11(1), 203–208 (2010)CrossRefGoogle Scholar
  26. 26.
    Q. Mi, Y. Ping, Y. Li, B. Cao, B.S. Brunschwig, P.G. Khalifah, G.A. Galli, H.B. Gray, N.S. Lewis, J. Am. Chem. Soc. 134(44), 18318–18324 (2012)CrossRefGoogle Scholar
  27. 27.
    P.M. Rao, I.S. Cho, X. Zheng, Proc. Combust. Inst. 34(2), 2187–2195 (2013)CrossRefGoogle Scholar
  28. 28.
    C. Guo, S. Yin, Y. Huang, Q. Dong, T. Sato, Langmuir 27(19), 12172–12178 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Michailovski, R. Kiebach, W. Bensch, J.-D. Grunwaldt, A. Baiker, S. Komarneni, G.R. Patzke, Chem. Mater. 19(2), 185–197 (2007)CrossRefGoogle Scholar
  30. 30.
    T. Gao, B.P. Jelle, J. Phys. Chem. C 117(26), 13753–13761 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Saenger, T. Höing, B.W. Robertson, R. Billa, T. Hofmann, E. Schubert, M. Schubert, Phys. Rev. B 78(24), 245205 (2008)CrossRefGoogle Scholar
  32. 32.
    L. Ge, Mater. Chem. Phys. 107(2–3), 465–470 (2008)CrossRefGoogle Scholar
  33. 33.
    Y. Wei, J. Su, X. Wan, L. Guo, L. Vayssieres, Nano Res. 9(6), 1561–1569 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Nenadovic, T. Rajh, O. Micic, A. Nozik, J. Phys. Chem. 88(24), 5827–5830 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Multiphase Flow in Power Engineering, International Research Centre for Renewable EnergyXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations