Tuning the band gap of PbSe quantum dots in glasses by TiO doping

  • Belay Brehane Tesfamariam
  • Jing Wang
  • Chao Liu
  • Jong Heo
Article
  • 265 Downloads

Abstract

Titanium monoxide (TiO) was added to host glass, which was heat-treated at 520 °C for 10 h to incorporate Ti2+ into PbSe quantum dots (QDs) to control their band gaps. Incorporation of Ti2+ ions into PbSe QDs was confirmed using electron energy loss spectroscopy analysis. Addition of TiO caused blue-shift of the absorption and photoluminescence (PL) bands of the QDs. Absorption bands moved from 1621 nm at TiO concentration [TiO] = 0.0% to 1418 nm at [TiO] = 0.4 mol%. Average diameters of QDs remained mostly unaffected (i.e., 6.25 ± 0.14 nm at [TiO] = 0.0% to 6.03 ± 0.1 nm at [TiO] = 0.4 mol%). The changes in absorption and PL bands originated from the incorporation of Ti2+ ions into PbSe QDs. Band gaps of PbSe QDs increased from 0.76 eV at [TiO] = 0% to 0.88 eV at [TiO] = 0.4 mol%. This simple method to tune the band gap of PbSe QDs has possible applications in optical communication fiber amplifiers, infrared laser sources and saturable absorbers.

References

  1. 1.
    N. Han, C. Liu, J. Zhang, X. Zhao, J. Heo, Y. Jiang, J. Non-Cryst. Solids 391, 39 (2014)CrossRefGoogle Scholar
  2. 2.
    J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004)CrossRefGoogle Scholar
  3. 3.
    G. Dong, G. Wu, S. Fan, F. Zhang, Y. Zhang, B. Wu, Z. Ma, M. Peng, J. Qiu, J. Non-Cryst. Solids 383, 192 (2014)CrossRefGoogle Scholar
  4. 4.
    D.W. Ma, C. Cheng, J. Am. Ceram. Soc. 96, 1428 (2013)CrossRefGoogle Scholar
  5. 5.
    F. Yue, J.W. Tomm, D. Kruschke, P. Glas, K.A. Bzheumikhov, Z.C. Margushev, Opt. Express 21, 2287 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Liu, J. Heo, Int. J. Appl. Glass. Sci. 4, 163 (2013)CrossRefGoogle Scholar
  7. 7.
    P.A. Loiko, G.E. Rachkovskaya, G.B. Zacharevich, V.S. Gurin, M.S. Gaponenko, K.V. Yumashev, J. Non-Cryst. Solids 358, 1840 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Wang, J. Zhang, C. Liu, J. Heo, Y.K. Kwon, J. Non-Cryst. Solids 431, 79 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, C. Liu, J. Heo, J. Non-Cryst. Solids 431, 93 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Wei, S. Chen, X. Ren, B. Qian, Y. Su, Z. Yang, Y. Zhang, Cryst. Eng. Comm. 14, 7408 (2012)CrossRefGoogle Scholar
  11. 11.
    R.E. Bailey, S. Nie, J. Am. Chem. Soc. 125, 7100 (2003)CrossRefGoogle Scholar
  12. 12.
    D. Lei, Y. Shen, Y. Feng, W. Feng, Sci. China Technol. Sci. 55, 903 (2012)CrossRefGoogle Scholar
  13. 13.
    W.J. Park, C. Liu, J. Heo, J. Am. Ceram. Soc. 98, 2074 (2015)CrossRefGoogle Scholar
  14. 14.
    S.A. Lourenço, N.O. Dantas, R.S. Silva, Phys. Chem. Chem. Phys. 14, 11040 (2012)CrossRefGoogle Scholar
  15. 15.
    S.A. Lourenço, R.S. Silva, A.A. Andrade, N.O. Dantas, J. Lumin. 130, 2118 (2010)CrossRefGoogle Scholar
  16. 16.
    D. Khokhlov, Lead Chalcogenides: Physics and Applications (Taylor & Francis, New York, 2003)Google Scholar
  17. 17.
    M.W. Barsoum, Fundamentals of Ceramics, 2nd edn. (IoP, London, 2003)CrossRefGoogle Scholar
  18. 18.
    G. Allan, C. Delerue, Phys. Rev. B 70, 245321 (2004)CrossRefGoogle Scholar
  19. 19.
    N.O. Dantas, E.S.F. Neto, R.S. Silva, in Diluted Magnetic Semiconductors in Glass Matrix, ed. by Y. Masuda (Sciyo, InTech, 2010), p. 143. http://www.intechopen.com/books/nanocrystals
  20. 20.
    L. Brus, J. Phys. Chem. 90, 2555 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Belay Brehane Tesfamariam
    • 1
  • Jing Wang
    • 2
  • Chao Liu
    • 2
  • Jong Heo
    • 1
  1. 1. Department of Materials Science and Engineering and Division of Advanced Nuclear EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea
  2. 2.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanChina

Personalised recommendations